
Optimal Fungal Space Searching Algorithms TNB-00028-2016 1 

 

Abstract— Previous experiments have shown that fungi use an 

efficient natural algorithm for searching the space available for 

their growth in micro-confined networks, e.g., mazes. This natural 

‘master’ algorithm, which comprises two ‘slave’ sub-algorithms, 

i.e., collision-induced branching and directional memory, has 

been shown to be more efficient than alternatives, with one, or the 

other, or both sub-algorithms turned off. In contrast, the present 

contribution compares the performance of the fungal natural 

algorithm against several standard artificial homologues. It was 

found that the space-searching fungal algorithm consistently 

outperforms uninformed algorithms, such as Depth-First-Search 

(DFS). Furthermore, while the natural algorithm is inferior to 

informed ones, such as A*, this under-performance does not 

importantly increase with the increase of the size of the maze. 

These findings suggest that a systematic effort of harvesting the 

natural space searching algorithms used by microorganisms is 

warranted and possibly overdue. These natural algorithms, if 

efficient, can be reverse-engineered for graph and tree search 

strategies. 

 
Index Terms— Maze searching, natural algorithms, 

biomimetics, microfluidics 

 

I. INTRODUCTION 

Biological entities have evolved highly efficient strategies 

for space searching, which are essential to their survival[1], 

both as individuals and as species. In many instances, 

non-human biological algorithms appear to be superior to those 

used by humans,[2] which opens up the opportunity for their 

‘reverse engineering’ for practical applications.[3] Despite 

their recent history, the bio-inspired algorithms have already 

achieved a high level of sophistication, allowing for 

comprehensive surveys and elaborate taxonomy.[3] More than 

2000 contributions and more than 40 comprehensive reviews 
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cite “bio-inspired algorithms” in their title. The bio-inspired 

algorithms, of which many deal with space-searching and/or 

space-partitioning, are “inspired” by evolutionary, ecological 

and swarming processes. Of the possible applications, one 

could mention many related to space searching and the 

management of available space[3]: optimal routing for 

vehicles, e.g., mobile robots, driverless cars, including 

sensor-based path planning and scheduling; Travel Salesman 

Problem (TSP), optimal power systems, including distribution 

over networks, engineering design, e.g., inverse airfoil design. 

Presently, however, the bio-inspired algorithms are just 

“inspired” by, rather than “reverse-engineered” from, natural 

algorithms “developed” by biological entities.  

Previous experiments[4, 5] demonstrated that fungi behave 

very differently in micro-confined spaces, and that they use 

specific procedures for searching space available for growth. 

While different species present different variants of this fungal 

algorithm, its framework is common and it consists of the 

synergetic use of two distinct ‘sub-algorithms’: 

collision-induced branching, and directional memory. These 

studies also demonstrated that the natural algorithm comprising 

the two ‘sub-algorithms’ is markedly superior to variants where 

one of these is, or both are suppressed. 

The present contribution extends the analysis of the 

efficiency of the fungal space searching algorithm, by 

benchmarking it against classical space searching algorithms. 

 

II. METHODS 

A. Fungal space searching algorithms 

Previous experimental and stochastic modelling works 

examined the growth of two species of filamentous fungi, i.e., 

Pycnoporus cinnabarinus,[4] and Neurospora crassa,[5, 6] 

inside a confined maze-like microfluidics structure. 

Microfluidics for Harvesting Space Search Algorithms. The 

fabrication of the test microfluidics structures[4, 6] consisted of 

the fabrication of a silicon mold; making a negative relief 

poly(dimethylsiloxane) (PDMS) stamp; rendering the 

hydrophobic PDMS surface hydrophilic by plasma treatment; 

and sealing the PDMS onto a flat base glass layer. The enclosed 

structure had lateral openings, allowing the introduction of 

inoculation and media. The fungi grow on the basal substrate 

and explore the test microfluidics structures. All species studied 

so far present two distinct ‘slave’ sub-algorithms: 

collision-induced branching and directional memory. 

Collision-induced branching. This sub-algorithm consists in 

the growth of the fungus, in confined spaces, without 

branching, until it reaches a wall, or a corner. If the ‘angle of 
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attack’ is shallow, the hypha, i.e., the filamentous extension by 

which fungi grow, will slide along the wall. Conversely, if the 

tip of the hypha, reaches a geometry that does not allow an exit, 

e.g., a corner, then the hypha will branch. 

The fungus has two branching mechanisms: one with very 

low frequency of branching, which is equivalent to the one used 

when growing in open spaces; and a high frequency one, 

triggered by the collision with growth-blocking geometries, 

which occurs often in confined spaces, e.g., mazes. 

Directional memory. The second sub-algorithm consists in 

the growth process where each branch ‘remembers’ its initial 

direction of growth. While each hypha has to negotiate various 

geometries, whenever the branch has the opportunity to grow in 

the direction it had initially, it will follow this with a high 

probability. Moreover, the branch will not grow further if the 

available space opens in a direction which is more than 

orthogonal with its initial direction, i.e., angles larger than 90° 

are not allowed. If no alternative passage is available, the hypha 

will stop growing and in most instances will branch following a 

‘rest period’ of time.  

Different species present different “parametrization” of their 

space searching algorithm (Fig 1). For instance, upon collision, 

P. cinnabarinus (Fig. 1, top left) will branch away from the 

leading tip.[4] The hyphae of N. crassa (Fig. 1, top right) 

however will split where the apex touches the 

collision-inducing geometry.[5, 6] Finally, A. mellea (Fig. 1, 

bottom) presents a very low branching frequency.  

In opposition with the species-specific collision-induced 

branching, the directional memory, which appears to be more 

important for the efficiency of the fungal space searching 

algorithm[4], presents smaller species-specific variations. 

Indeed, Fig. 1 shows that initial hypha entering the maze (left 

bottom), for all species, maintains its initial direction at least for 

half of the diagonal of the maze, and that the direction of the 

growth changes once a new branch has been created.  

These two sub-algorithms is presented in Fig. 2, and a 

sequence of events during fungal growth is presented in Fig. 3. 

 

B. Bio-inspired Search Algorithms 

Maze generation. Since maze-solving can be generalized to 

graph searching, the mazes were generated by a graph-based 

algorithm (Fig. 4). Specifically, the graph was designed as a 

“w-by-h” grid, with w and h being the maze width and height. 

Each cell represents a square on the grid whereas the black lines 

indicate the walls (Fig 4, left). If each cell is the vertex of a 

 
Fig 2. Space searching algorithms used by a fungus (i.e. P. cinnabarinus). Top 
left panel: Collision-induced branching. The hyphae slide along walls if the 

angle of attack is shallow. When facing a corner, the hyphae will branch (red 
arrow), unlike “no collision-induced branching” (top right panel). Bottom 

right panel: Directional memory. The hyphae slide along the walls, then 

redirect growth in the same direction they had initially (left scheme), unlike 
“no-directional memory” (right). An image of the fungus growing in a maze 

(bottom left panel) shows both the collision-induced branching events (top 

arrow), and the overall directional memory (bottom arrow). 

 

 

Fig. 1. A maze solved by 

different fungal species. P. 
cinnabarinus (top left) 

branches behind the point of 

collision, while N. crassa 
(top right) branches at the 

point of collision. A. mellea 

(bottom) presents a very low 
branching rate. All species 

manifest various degrees of 

directional memory. 
 

 
Fig 3. Schematic sequence of fungal growth. Directional memory (top) biases 

the growth towards the same initial direction (θ). Collision induced branching 

(bottom) imposes a branching event (here for P. cinnabarinus, i.e., branch 

emerging behind the leading tip) whenever growth is blocked by a dead-end. 
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graph, then a cell may be connected to another cell if there are 

no walls between them (Fig 4, middle). Each cell can have from 

0 to 4 walls; 0 walls means the cell is a 4-way intersection, and 

4 walls means the cell is completely closed off.  

The maze is initialized as a 2D array of disconnected 

vertices, represented as a rectangular grid. Two randomized 

options are available for maze generation, with distinct 

algorithms for removing walls in the grid, resulting in two 

“styles” of mazes. The first algorithm implements a queue- 

based, Depth-First-Search (DFS) methodology,[7] i.e., a 

first-in-first-out graph-searching algorithm. Starting from the 

entrance, a random wall leading to an adjacent cell is removed, 

and the cell is marked as “visited”. The algorithm then removes 

a random wall in the newly-visited adjacent cell, etc., until the 

user-supplied exit point is found and all cells have been visited, 

resulting in mazes with long corridors and few branches. 

The second option implements Kruskal’s algorithm, [8] the 

initial maze of closed cells is seen as a grid of disjoint sets, each 

containing only one vertex. A separate array containing all 

walls is also created. Then, at random, walls are chosen out of 

this array. If the wall divides cells belonging to separate sets, 

the wall is removed and the two cells are joined into one set. 

This is repeated until all cells belong in a single set. In contrast 

to DFS, Kruskal’s algorithm results in a maze that branches 

frequently in all directions, and contains few long paths. 

Space searching algorithm. The Bio-Inspired Algorithm 

(BIA) was implemented in Java, coupling two distinct 

sub-algorithms, i.e., collision-induced branching, and 

directional memory (pseudo-code in the Appendix A). 

Collision-induced branching. Instead of using recursion or a 

stack, cells were stored in a data structure that allows direct 

access, in this case, an array. This way, when a dead end is 

reached, the next cell to visit is determined algorithmically 

rather than using a last-in-first-out method. 

Directional memory. Directional memory is implemented in 

Java by including the starting angle of each branch object as a 

class constant, and the current angle of the branch as a class 

variable. A fungal branch will travel at its starting angle as far 

as possible, whenever possible, and only changes its current 

angle when no paths are available in its starting direction. 

III. RESULTS AND DISCUSSION 

A. Space searching and solving mazes 

Mazes are used to estimate the behavioral response of many 

organisms, i.e., ants, bees, mice, rats, octopi, and humans[9], as 

well as artificial intelligence-enabled robots.[10] 

The efficiency of space searching algorithms depends greatly 

on the geometry of the space and specifically confinement 

properties.[11] At one end of the scale, empty space without 

obstacles cannot be explored any better than by using a 

diffusion, or diffusion-like approach, e.g. a Levy flight.[12] 

Depending on how the nutrients (or other resources of interest) 

are distributed in such a space, it appears generally that Levy 

flight processes are both what biological systems use and what 

is actually mathematically optimal.[13] 

At the other end of the scale, the space search problem in a 

maze, a highly constrained geometry, reduces specifically to 

the problem of graph connectedness.[14] Because the maze is a 

graph, and it is required for an exit to be found, this translates 

into asking a computational system, e.g., a fungus, to find if the 

entry and exit of the maze/graph are connected (and if so, how), 

or not. This problem, of graph connectedness, is known to be in 

computational class P and can be solved in a number of ways, 

but most commonly this is done using “breadth-first search”, 

first proposed in the 1950s.[15] Its time complexity is O(V+E) 

where V and E are the number of edges and vertices, 

respectively. In general we think of graphs (and mazes) as 

being specified by the number of vertices and in the case of a 

graph were most vertices are locally connected together, the 

time to establish the path from entry to exit would be a fixed, 

low (e.g., 1-3) power of E. 

 

B. Fungal ‘intelligence’ 

Microfluidics technology allowed the miniaturization of 

maze structures, used to test the maze-solving ability of both 

abiotic[16] and biotic[17] agents and to modulate and observe 

the collective behavior of bacteria[18, 19]. 

An interesting aspect of the fungal search algorithms is that 

they do not require nutrient-related clues regarding the 

geometry of the environment. Previous studies have 

documented maze-solving by placement of nutrients at the 

exits,[17] or quorum-related signaling,[20] but the study of 

fungal space searching suppressed nutrient gradients. This 

response is consistent with the fact that natural fungal habitats 

are nutritionally heterogeneous and require hyphae to continue 

colony extension in the absence of chemotactic cues. 

The ubiquity of fungi in micro-confined maze-like habitats 

suggests that they may be efficient solving agents of 

geometrical problems. While this ability was assessed versus 

variants missing one, or the other sub-algorithm, or both, the 

performance of the fungal space search algorithm versus 

standard path search algorithms was not previously examined. 

 

C. Assessing the efficiency of the Bio-Inspired Algorithm 

To examine the Bio-Inspired Algorithm (BIA), we tested its 

completeness, reachable state space and optimality under both 

non-randomized and randomized mazes, generated by DFS 

(which resulted in almost no dead ends), and by Kruskal’s 

algorithm (leading to multiple dead ends), respectively. 

Completeness. Starting from a root node (beginning of 

maze), this test aims to find to what extent BIA finds the leaf 

node (end of maze). The tests were run on different maze sizes 

and by placing the starting and ending vertices at various 

 
Fig 4. Evolution of the construction of a maze. 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TNB.2016.2567098

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Optimal Fungal Space Searching Algorithms TNB-00028-2016 4 

positions. For the maze sizes up to 50x50, BIA solved every 

maze with different starting and ending positions. Upon 

encountering a dead end, the algorithm goes back to a 

previously branching point and resumes from there. While this 

approach appears to be sub-optimal, the algorithm will always 

find the exit on finite mazes. In this regard, it must be noted that 

in many biological instances, robustness of behavior is more 

important than efficiency. 

Reachable state space. Mazes can serve as a background to 

state-space searching because this is composed of an 

environment (the maze) that is divided into equally sized units 

(states). For this test, we defined a start state (beginning of the 

maze) and final state (end of maze) and counted the number of 

covered nodes when the final state was reached. In Fig. 5, it can 

be seen that when the maze size grows, the portion of reachable 

state space remains constant (around 2/3 is explored). 

Optimality. The objective of this test is to determine the 

effectiveness of the algorithm in finding a least-cost solution. 

Since the exit of the maze is unknown, we expect an average of 

50% chance of finding the shortest path. As shown by Fig. 6, 

the reliability of finding the shortest path starts from ~50% in 

small maze sizes (11x11) and decreases with larger maze sizes. 

It is important to note that real fungi, tested under laboratory 

conditions, can pick up various indications in the solution as to 

where the target is and find it faster. For a more effective 

search, it can be useful to model those condition, if provided the 

necessary information. 

 

D. Comparison with other maze solving algorithms 

Noting that fungi have complex, and different from computer 

algorithms, ‘objective function’ against which they optimize 

their behavior, it is of critical importance for “mathematical 

biomimetics” to benchmark these natural algorithms against 

standard ones with similar scope. 

Reachable state space. This test was applied to examine the 

amount of necessary memory. Because this is an uninformed 

search (the search is the same regardless of the context), we 

observed that BIA is less efficient than and an informed search, 

e.g., A*.[21] However, BIA is consistently better than DFS, i.e. 

the covered area while the final state was reached for BIA will 

be larger than informed search but smaller than DFS. While the 

comparison with inherently more efficient algorithms may be 

‘unfair’, it is nevertheless more comprehensive. 

As shown by Fig. 7, DFS takes the most space when 

performing maze search, while BIA is ~20% more efficient in 

larger mazes (30x30 and up). A*, being an informed search, is, 

as expected, much more efficient and therefore much more 

compact. 

It is important to note the difference between randomized 

and nonrandomized mazes. In the non-randomized maze, BIA 

and DFS are more similar in performance due to the limited 

number of dead ends (Fig 7, top). With randomized mazes 

where they are multiple dead ends, the difference between BIA 

and DFS is visible even with smaller mazes (Fig 7, bottom). 

Running time. The comparison of the performance of the 

natural (BIA) algorithm with standard ones has been extended 

and deepened, by benchmarking the experimental running time 

 
Fig 5. Examples of the coverage of the mazes when explored by BIA, for 

20x20 (left), and 50x50 (right) mazes.  

Fig 6. Shortest path effectiveness, as ratio of the length of the shortest path 

versus the lengths of actual paths, in different maze sizes. 
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Fig 7. Reachable space, for non-randomized (top), and randomized (bottom) 

space, as a result of the exploration of mazes with various sizes by BIA, DFS 

and A* algorithms, respectively.  
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on a computer for uninformed algorithms, i.e., BIA, and DFS, 

and for informed maze search algorithms, i.e., Best First 

Search,[22] Jump Point Search,[23] and Dijkstra.[24] The tests 

have been run on a Dell Inspiron i3. The mazes used for tests 

were non-randomized. 

Fig 8 (top) presents the computational performance of 

various maze-solving algorithms. For large mazes, the 

execution time increases significantly for uninformed 

algorithms, i.e., BIA and DFS. For uninformed algorithms, 

DFS performs slightly better in smaller maze size (up to 

30x35). However, when the maze size keeps growing, BIA 

performs much better than DFS. 

A more ‘correct’ comparison, i.e., between the uninformed 

algorithms DFS and BIA, rather than comparing together the 

performance of informed and uninformed algorithms, 

demonstrates the efficiency of the natural algorithm (Fig 8, 

bottom). Interestingly, in smaller mazes (up to 30x30), DFS 

performs slightly better than BIA, but at mazes with sizes larger 

than 40x40, BIA performs 20-40% better (tested until 70x70). 

Moreover, if we assume the dominant term of the running 

time is of the form run_time=a𝑛b, where n is the maze size (as a 

product of the width and the height), we can derive the 

following asymptotic complexity of BIA and DFS (Table 1). 

Under these preliminary observations, the correlation between 

the computing time and the size of the maze predicts that the 

DFS algorithm will scale up with the size of the maze at a 

power ~2.4, whereas the Bio-Inspired Algorithm (BIA) will 

scale up at a power ~2.2. While the pre-exponential coefficient 

of the power law relationship between the computing time and 

the maze size is larger for BIA than that for DFS, the lower 

value of the exponent accounts for the better performance of 

BIA vs. DFS for larger mazes.  

Table 1. Coefficients of run_time = a·(maze size)
b
 

The above data indicate that, while BIA appears to scale up 

with the size of the maze worse than A* (a mid-performance 

algorithm within the class of informed ones), it is nevertheless 

not far away from some informed algorithms, such as Jump 

Point Search and Dijkstra. It needs to be noted that BIA, as 

implemented here, is a ‘raw’ algorithm, i.e., ‘copied’ from the 

natural one without any improvement. Consequently, future 

directions of research could comprise both exhaustive 

harvesting of natural algorithms, as well as their optimization, 

e.g., via an in silico evolutionary process. 

Perspectives on natural space search algorithms. Many of 

the performance-related characteristics of the natural space 

searching algorithms, as well as those related to 

non-performance, can be understood when considering a 

biological perspective. Indeed, fungi have to survive with little 

or erratic distribution of nutrients, and a heterogeneous 

environment, without any means to ‘estimate-ahead’ these 

critical constraints. Furthermore, the variations in the space 

searching algorithms are also justified by species-specific 

environmental parameters. For instance, hard walls, e.g., rock 

or wood, require a collision-induce branching behind the 

leading tip, whereas soft walls, e.g., bread, require a 

split-at-the-top variant. Also, the overall structure of the 

confining environments, and their static or dynamic geometry, 

will modulate the ‘length’ of the directional memory. Finally, it 

appears that the fungal algorithms for space search bear some 

level of anthropomorphic characters, e.g., cooperation, 

competition, and the balance between them, even ‘altruism’ 

and ‘sacrifice’ for the benefit of the colony (and the species). 

A brief analysis of the fungal algorithms also reveals 

interesting features, e.g., inherently stochastic behavior, caused 

by the variability of cellular responses to environmental 

constraints, decentralized ‘computation’ with local 

re-allocation of computational resources (i.e., biomass), the 

identical ‘computational’ nature of growing and moving, and 

an efficient balance between biological adaptability to 

immediate challenges versus ‘grand plan’ algorithmic design 

distilled during many evolutionary cycles.  

These considerations suggest that an effort to harvest the 

biological space searching algorithms can be the basis for their 

reverse-engineering for graph and tree search strategies. 

Space searching algorithms a b R
2
 

Trace 0.82 1.39 0.85 

Best-First-Search 0.81 1.42 0.86 

A* 1.25 1.61 0.94 

Dijkstra 1.20 1.94 0.99 

Jump Point Search 0.71 2.03 0.91 

Bio-Inspired Algorithm 1.00 2.19 0.96 

Depth First Search (DFS) 0.83 2.42 0.91 

 

Fig 8. Evolution of the computing time vs. maze size for BIA and standard 

space search algorithms (top, logarithmic scale); and BIA and DFS (bottom) 
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IV. CONCLUSIONS 

We compared the performance of the natural algorithm for 

space search used by fungi, against several standard space 

searching algorithms, both uninformed of the maze structure, 

i.e., DFS algorithm, as well as informed ones, such as A*, Best 

First Search, Jump Point Search, and Dijkstra.  

The fungal natural algorithm consistently outperforms DFS, 

and although it is inferior to other informed algorithms, e.g., 

A*, this under-performance does not increase with the increase 

of the size of the maze. This result suggests that further studies 

regarding the natural algorithms used by microorganisms with 

regard to their optimality vs. artificial counterparts are 

warranted, and perhaps overdue, and that they can lead to for 

their reverse-engineering for graph and tree search strategies.  
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APPENDIX A: 

Pseudo-code of the Bio-Inspired Algorithm (BIA) 

 

1. Initialization: 

a. Create an array UnvisitedCell to store 

unvisited cell locations 

b. Start with an arbitrary direction to enter the 

maze 

c. Set DirectionalMemory(1) = the entering 

direction 

Begin 

a. Move forward with the current direction until 

bump into the wall (go to Directional Memory 

Section) or corner (go to Corner-induced 

Collision Branching) 

b. Remove the visited cell locations away from 

UnvisitedCell 

2. Directional Memory 

a. If cell collide on the wall 

Follow the wall direction  

End 
b. Once the cell leave the wall, follow the 

direction stored in DirectionalMemory 

c. If not applicable  

Select an arbitrary direction to restart  

Update DirectionalMemory(n) = the new 

direction  

End 

3. Corner-induced Collision Branching 

a. If cell collide on the corner or the dead end 

Generate a new branch from UnvisitedCell 

Set DirectionalMemory(n) = the starting 

direction 

End 

Repeat until the maze is solved 
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