
Optimal Fungal Space Searching Algorithms TNB-00028-2016 1

Abstract— Previous experiments have shown that fungi use an

efficient natural algorithm for searching the space available for

their growth in micro-confined networks, e.g., mazes. This natural

‘master’ algorithm, which comprises two ‘slave’ sub-algorithms,

i.e., collision-induced branching and directional memory, has

been shown to be more efficient than alternatives, with one, or the

other, or both sub-algorithms turned off. In contrast, the present

contribution compares the performance of the fungal natural

algorithm against several standard artificial homologues. It was

found that the space-searching fungal algorithm consistently

outperforms uninformed algorithms, such as Depth-First-Search

(DFS). Furthermore, while the natural algorithm is inferior to

informed ones, such as A*, this under-performance does not

importantly increase with the increase of the size of the maze.

These findings suggest that a systematic effort of harvesting the

natural space searching algorithms used by microorganisms is

warranted and possibly overdue. These natural algorithms, if

efficient, can be reverse-engineered for graph and tree search

strategies.

Index Terms— Maze searching, natural algorithms,

biomimetics, microfluidics

I. INTRODUCTION

Biological entities have evolved highly efficient strategies

for space searching, which are essential to their survival[1],

both as individuals and as species. In many instances,

non-human biological algorithms appear to be superior to those

used by humans,[2] which opens up the opportunity for their

‘reverse engineering’ for practical applications.[3] Despite

their recent history, the bio-inspired algorithms have already

achieved a high level of sophistication, allowing for

comprehensive surveys and elaborate taxonomy.[3] More than

2000 contributions and more than 40 comprehensive reviews

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee.

This paper was submitted for review on 17.2.2016. The work was

financially supported by the European Union Seventh Framework Programme
(FP7/2007-2013, grant agreements 228971, MONAD; 613044, ABACUS) and

Defense Advanced Research Projects Agency, grant agreement

N66001-03-1-8913.
E. Asenova, H-Y Lin, and E. Fu are at McGill University, Department of

Bioengineering, Montreal, Quebec, H3A 0C3, Canada.

*E. Asenova, H-Y Lin contributed equally to this work
D.V. Nicolau Jr. is at Molecular Sense Ltd., Wallasey, CH44 1AJ, UK

D. V. Nicolau is at McGill University, Department of Bioengineering,

Faculty of Engineering, Montreal, Quebec, H3A 0C3, Canada (email:
dan.nicolau@mcgill.ca)

cite “bio-inspired algorithms” in their title. The bio-inspired

algorithms, of which many deal with space-searching and/or

space-partitioning, are “inspired” by evolutionary, ecological

and swarming processes. Of the possible applications, one

could mention many related to space searching and the

management of available space[3]: optimal routing for

vehicles, e.g., mobile robots, driverless cars, including

sensor-based path planning and scheduling; Travel Salesman

Problem (TSP), optimal power systems, including distribution

over networks, engineering design, e.g., inverse airfoil design.

Presently, however, the bio-inspired algorithms are just

“inspired” by, rather than “reverse-engineered” from, natural

algorithms “developed” by biological entities.

Previous experiments[4, 5] demonstrated that fungi behave

very differently in micro-confined spaces, and that they use

specific procedures for searching space available for growth.

While different species present different variants of this fungal

algorithm, its framework is common and it consists of the

synergetic use of two distinct ‘sub-algorithms’:

collision-induced branching, and directional memory. These

studies also demonstrated that the natural algorithm comprising

the two ‘sub-algorithms’ is markedly superior to variants where

one of these is, or both are suppressed.

The present contribution extends the analysis of the

efficiency of the fungal space searching algorithm, by

benchmarking it against classical space searching algorithms.

II. METHODS

A. Fungal space searching algorithms

Previous experimental and stochastic modelling works

examined the growth of two species of filamentous fungi, i.e.,

Pycnoporus cinnabarinus,[4] and Neurospora crassa,[5, 6]

inside a confined maze-like microfluidics structure.

Microfluidics for Harvesting Space Search Algorithms. The

fabrication of the test microfluidics structures[4, 6] consisted of

the fabrication of a silicon mold; making a negative relief

poly(dimethylsiloxane) (PDMS) stamp; rendering the

hydrophobic PDMS surface hydrophilic by plasma treatment;

and sealing the PDMS onto a flat base glass layer. The enclosed

structure had lateral openings, allowing the introduction of

inoculation and media. The fungi grow on the basal substrate

and explore the test microfluidics structures. All species studied

so far present two distinct ‘slave’ sub-algorithms:

collision-induced branching and directional memory.

Collision-induced branching. This sub-algorithm consists in

the growth of the fungus, in confined spaces, without

branching, until it reaches a wall, or a corner. If the ‘angle of

Optimal Fungal Space Searching Algorithms

E. Asenova*, H-Y Lin*, E. Fu, D. V. Nicolau Jr., D.V. Nicolau

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNB.2016.2567098

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Optimal Fungal Space Searching Algorithms TNB-00028-2016 2

attack’ is shallow, the hypha, i.e., the filamentous extension by

which fungi grow, will slide along the wall. Conversely, if the

tip of the hypha, reaches a geometry that does not allow an exit,

e.g., a corner, then the hypha will branch.

The fungus has two branching mechanisms: one with very

low frequency of branching, which is equivalent to the one used

when growing in open spaces; and a high frequency one,

triggered by the collision with growth-blocking geometries,

which occurs often in confined spaces, e.g., mazes.

Directional memory. The second sub-algorithm consists in

the growth process where each branch ‘remembers’ its initial

direction of growth. While each hypha has to negotiate various

geometries, whenever the branch has the opportunity to grow in

the direction it had initially, it will follow this with a high

probability. Moreover, the branch will not grow further if the

available space opens in a direction which is more than

orthogonal with its initial direction, i.e., angles larger than 90°

are not allowed. If no alternative passage is available, the hypha

will stop growing and in most instances will branch following a

‘rest period’ of time.

Different species present different “parametrization” of their

space searching algorithm (Fig 1). For instance, upon collision,

P. cinnabarinus (Fig. 1, top left) will branch away from the

leading tip.[4] The hyphae of N. crassa (Fig. 1, top right)

however will split where the apex touches the

collision-inducing geometry.[5, 6] Finally, A. mellea (Fig. 1,

bottom) presents a very low branching frequency.

In opposition with the species-specific collision-induced

branching, the directional memory, which appears to be more

important for the efficiency of the fungal space searching

algorithm[4], presents smaller species-specific variations.

Indeed, Fig. 1 shows that initial hypha entering the maze (left

bottom), for all species, maintains its initial direction at least for

half of the diagonal of the maze, and that the direction of the

growth changes once a new branch has been created.

These two sub-algorithms is presented in Fig. 2, and a

sequence of events during fungal growth is presented in Fig. 3.

B. Bio-inspired Search Algorithms

Maze generation. Since maze-solving can be generalized to

graph searching, the mazes were generated by a graph-based

algorithm (Fig. 4). Specifically, the graph was designed as a

“w-by-h” grid, with w and h being the maze width and height.

Each cell represents a square on the grid whereas the black lines

indicate the walls (Fig 4, left). If each cell is the vertex of a

Fig 2. Space searching algorithms used by a fungus (i.e. P. cinnabarinus). Top
left panel: Collision-induced branching. The hyphae slide along walls if the

angle of attack is shallow. When facing a corner, the hyphae will branch (red
arrow), unlike “no collision-induced branching” (top right panel). Bottom

right panel: Directional memory. The hyphae slide along the walls, then

redirect growth in the same direction they had initially (left scheme), unlike
“no-directional memory” (right). An image of the fungus growing in a maze

(bottom left panel) shows both the collision-induced branching events (top

arrow), and the overall directional memory (bottom arrow).

Fig. 1. A maze solved by

different fungal species. P.
cinnabarinus (top left)

branches behind the point of

collision, while N. crassa
(top right) branches at the

point of collision. A. mellea

(bottom) presents a very low
branching rate. All species

manifest various degrees of

directional memory.

Fig 3. Schematic sequence of fungal growth. Directional memory (top) biases

the growth towards the same initial direction (θ). Collision induced branching

(bottom) imposes a branching event (here for P. cinnabarinus, i.e., branch

emerging behind the leading tip) whenever growth is blocked by a dead-end.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNB.2016.2567098

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Optimal Fungal Space Searching Algorithms TNB-00028-2016 3

graph, then a cell may be connected to another cell if there are

no walls between them (Fig 4, middle). Each cell can have from

0 to 4 walls; 0 walls means the cell is a 4-way intersection, and

4 walls means the cell is completely closed off.

The maze is initialized as a 2D array of disconnected

vertices, represented as a rectangular grid. Two randomized

options are available for maze generation, with distinct

algorithms for removing walls in the grid, resulting in two

“styles” of mazes. The first algorithm implements a queue-

based, Depth-First-Search (DFS) methodology,[7] i.e., a

first-in-first-out graph-searching algorithm. Starting from the

entrance, a random wall leading to an adjacent cell is removed,

and the cell is marked as “visited”. The algorithm then removes

a random wall in the newly-visited adjacent cell, etc., until the

user-supplied exit point is found and all cells have been visited,

resulting in mazes with long corridors and few branches.

The second option implements Kruskal’s algorithm, [8] the

initial maze of closed cells is seen as a grid of disjoint sets, each

containing only one vertex. A separate array containing all

walls is also created. Then, at random, walls are chosen out of

this array. If the wall divides cells belonging to separate sets,

the wall is removed and the two cells are joined into one set.

This is repeated until all cells belong in a single set. In contrast

to DFS, Kruskal’s algorithm results in a maze that branches

frequently in all directions, and contains few long paths.

Space searching algorithm. The Bio-Inspired Algorithm

(BIA) was implemented in Java, coupling two distinct

sub-algorithms, i.e., collision-induced branching, and

directional memory (pseudo-code in the Appendix A).

Collision-induced branching. Instead of using recursion or a

stack, cells were stored in a data structure that allows direct

access, in this case, an array. This way, when a dead end is

reached, the next cell to visit is determined algorithmically

rather than using a last-in-first-out method.

Directional memory. Directional memory is implemented in

Java by including the starting angle of each branch object as a

class constant, and the current angle of the branch as a class

variable. A fungal branch will travel at its starting angle as far

as possible, whenever possible, and only changes its current

angle when no paths are available in its starting direction.

III. RESULTS AND DISCUSSION

A. Space searching and solving mazes

Mazes are used to estimate the behavioral response of many

organisms, i.e., ants, bees, mice, rats, octopi, and humans[9], as

well as artificial intelligence-enabled robots.[10]

The efficiency of space searching algorithms depends greatly

on the geometry of the space and specifically confinement

properties.[11] At one end of the scale, empty space without

obstacles cannot be explored any better than by using a

diffusion, or diffusion-like approach, e.g. a Levy flight.[12]

Depending on how the nutrients (or other resources of interest)

are distributed in such a space, it appears generally that Levy

flight processes are both what biological systems use and what

is actually mathematically optimal.[13]

At the other end of the scale, the space search problem in a

maze, a highly constrained geometry, reduces specifically to

the problem of graph connectedness.[14] Because the maze is a

graph, and it is required for an exit to be found, this translates

into asking a computational system, e.g., a fungus, to find if the

entry and exit of the maze/graph are connected (and if so, how),

or not. This problem, of graph connectedness, is known to be in

computational class P and can be solved in a number of ways,

but most commonly this is done using “breadth-first search”,

first proposed in the 1950s.[15] Its time complexity is O(V+E)

where V and E are the number of edges and vertices,

respectively. In general we think of graphs (and mazes) as

being specified by the number of vertices and in the case of a

graph were most vertices are locally connected together, the

time to establish the path from entry to exit would be a fixed,

low (e.g., 1-3) power of E.

B. Fungal ‘intelligence’

Microfluidics technology allowed the miniaturization of

maze structures, used to test the maze-solving ability of both

abiotic[16] and biotic[17] agents and to modulate and observe

the collective behavior of bacteria[18, 19].

An interesting aspect of the fungal search algorithms is that

they do not require nutrient-related clues regarding the

geometry of the environment. Previous studies have

documented maze-solving by placement of nutrients at the

exits,[17] or quorum-related signaling,[20] but the study of

fungal space searching suppressed nutrient gradients. This

response is consistent with the fact that natural fungal habitats

are nutritionally heterogeneous and require hyphae to continue

colony extension in the absence of chemotactic cues.

The ubiquity of fungi in micro-confined maze-like habitats

suggests that they may be efficient solving agents of

geometrical problems. While this ability was assessed versus

variants missing one, or the other sub-algorithm, or both, the

performance of the fungal space search algorithm versus

standard path search algorithms was not previously examined.

C. Assessing the efficiency of the Bio-Inspired Algorithm

To examine the Bio-Inspired Algorithm (BIA), we tested its

completeness, reachable state space and optimality under both

non-randomized and randomized mazes, generated by DFS

(which resulted in almost no dead ends), and by Kruskal’s

algorithm (leading to multiple dead ends), respectively.

Completeness. Starting from a root node (beginning of

maze), this test aims to find to what extent BIA finds the leaf

node (end of maze). The tests were run on different maze sizes

and by placing the starting and ending vertices at various

Fig 4. Evolution of the construction of a maze.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNB.2016.2567098

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Optimal Fungal Space Searching Algorithms TNB-00028-2016 4

positions. For the maze sizes up to 50x50, BIA solved every

maze with different starting and ending positions. Upon

encountering a dead end, the algorithm goes back to a

previously branching point and resumes from there. While this

approach appears to be sub-optimal, the algorithm will always

find the exit on finite mazes. In this regard, it must be noted that

in many biological instances, robustness of behavior is more

important than efficiency.

Reachable state space. Mazes can serve as a background to

state-space searching because this is composed of an

environment (the maze) that is divided into equally sized units

(states). For this test, we defined a start state (beginning of the

maze) and final state (end of maze) and counted the number of

covered nodes when the final state was reached. In Fig. 5, it can

be seen that when the maze size grows, the portion of reachable

state space remains constant (around 2/3 is explored).

Optimality. The objective of this test is to determine the

effectiveness of the algorithm in finding a least-cost solution.

Since the exit of the maze is unknown, we expect an average of

50% chance of finding the shortest path. As shown by Fig. 6,

the reliability of finding the shortest path starts from ~50% in

small maze sizes (11x11) and decreases with larger maze sizes.

It is important to note that real fungi, tested under laboratory

conditions, can pick up various indications in the solution as to

where the target is and find it faster. For a more effective

search, it can be useful to model those condition, if provided the

necessary information.

D. Comparison with other maze solving algorithms

Noting that fungi have complex, and different from computer

algorithms, ‘objective function’ against which they optimize

their behavior, it is of critical importance for “mathematical

biomimetics” to benchmark these natural algorithms against

standard ones with similar scope.

Reachable state space. This test was applied to examine the

amount of necessary memory. Because this is an uninformed

search (the search is the same regardless of the context), we

observed that BIA is less efficient than and an informed search,

e.g., A*.[21] However, BIA is consistently better than DFS, i.e.

the covered area while the final state was reached for BIA will

be larger than informed search but smaller than DFS. While the

comparison with inherently more efficient algorithms may be

‘unfair’, it is nevertheless more comprehensive.

As shown by Fig. 7, DFS takes the most space when

performing maze search, while BIA is ~20% more efficient in

larger mazes (30x30 and up). A*, being an informed search, is,

as expected, much more efficient and therefore much more

compact.

It is important to note the difference between randomized

and nonrandomized mazes. In the non-randomized maze, BIA

and DFS are more similar in performance due to the limited

number of dead ends (Fig 7, top). With randomized mazes

where they are multiple dead ends, the difference between BIA

and DFS is visible even with smaller mazes (Fig 7, bottom).

Running time. The comparison of the performance of the

natural (BIA) algorithm with standard ones has been extended

and deepened, by benchmarking the experimental running time

Fig 5. Examples of the coverage of the mazes when explored by BIA, for

20x20 (left), and 50x50 (right) mazes.

Fig 6. Shortest path effectiveness, as ratio of the length of the shortest path

versus the lengths of actual paths, in different maze sizes.

0

0.2

0.4

0.6

0.8

11x11 20x20 30x30

S
h

o
rt

e
s

t
P

a
th

E
ff

e
c

ti
v
e

n
e

s
s

Maze Size

Fig 7. Reachable space, for non-randomized (top), and randomized (bottom)

space, as a result of the exploration of mazes with various sizes by BIA, DFS

and A* algorithms, respectively.

0

200

400

600

800

11x11 20x20 30x30

E
x

a
m

in
e

d
 V

e
rt

ic
e

s

Maze Size

BIA

DFS

A*

0

200

400

600

800

11x11 20x20 30x30

E
x

a
m

in
e
d

 V
e

rt
ic

e
s

Maze Size

BIA

DFS

A*

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNB.2016.2567098

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Optimal Fungal Space Searching Algorithms TNB-00028-2016 5

on a computer for uninformed algorithms, i.e., BIA, and DFS,

and for informed maze search algorithms, i.e., Best First

Search,[22] Jump Point Search,[23] and Dijkstra.[24] The tests

have been run on a Dell Inspiron i3. The mazes used for tests

were non-randomized.

Fig 8 (top) presents the computational performance of

various maze-solving algorithms. For large mazes, the

execution time increases significantly for uninformed

algorithms, i.e., BIA and DFS. For uninformed algorithms,

DFS performs slightly better in smaller maze size (up to

30x35). However, when the maze size keeps growing, BIA

performs much better than DFS.

A more ‘correct’ comparison, i.e., between the uninformed

algorithms DFS and BIA, rather than comparing together the

performance of informed and uninformed algorithms,

demonstrates the efficiency of the natural algorithm (Fig 8,

bottom). Interestingly, in smaller mazes (up to 30x30), DFS

performs slightly better than BIA, but at mazes with sizes larger

than 40x40, BIA performs 20-40% better (tested until 70x70).

Moreover, if we assume the dominant term of the running

time is of the form run_time=a𝑛b, where n is the maze size (as a

product of the width and the height), we can derive the

following asymptotic complexity of BIA and DFS (Table 1).

Under these preliminary observations, the correlation between

the computing time and the size of the maze predicts that the

DFS algorithm will scale up with the size of the maze at a

power ~2.4, whereas the Bio-Inspired Algorithm (BIA) will

scale up at a power ~2.2. While the pre-exponential coefficient

of the power law relationship between the computing time and

the maze size is larger for BIA than that for DFS, the lower

value of the exponent accounts for the better performance of

BIA vs. DFS for larger mazes.

Table 1. Coefficients of run_time = a·(maze size)
b

The above data indicate that, while BIA appears to scale up

with the size of the maze worse than A* (a mid-performance

algorithm within the class of informed ones), it is nevertheless

not far away from some informed algorithms, such as Jump

Point Search and Dijkstra. It needs to be noted that BIA, as

implemented here, is a ‘raw’ algorithm, i.e., ‘copied’ from the

natural one without any improvement. Consequently, future

directions of research could comprise both exhaustive

harvesting of natural algorithms, as well as their optimization,

e.g., via an in silico evolutionary process.

Perspectives on natural space search algorithms. Many of

the performance-related characteristics of the natural space

searching algorithms, as well as those related to

non-performance, can be understood when considering a

biological perspective. Indeed, fungi have to survive with little

or erratic distribution of nutrients, and a heterogeneous

environment, without any means to ‘estimate-ahead’ these

critical constraints. Furthermore, the variations in the space

searching algorithms are also justified by species-specific

environmental parameters. For instance, hard walls, e.g., rock

or wood, require a collision-induce branching behind the

leading tip, whereas soft walls, e.g., bread, require a

split-at-the-top variant. Also, the overall structure of the

confining environments, and their static or dynamic geometry,

will modulate the ‘length’ of the directional memory. Finally, it

appears that the fungal algorithms for space search bear some

level of anthropomorphic characters, e.g., cooperation,

competition, and the balance between them, even ‘altruism’

and ‘sacrifice’ for the benefit of the colony (and the species).

A brief analysis of the fungal algorithms also reveals

interesting features, e.g., inherently stochastic behavior, caused

by the variability of cellular responses to environmental

constraints, decentralized ‘computation’ with local

re-allocation of computational resources (i.e., biomass), the

identical ‘computational’ nature of growing and moving, and

an efficient balance between biological adaptability to

immediate challenges versus ‘grand plan’ algorithmic design

distilled during many evolutionary cycles.

These considerations suggest that an effort to harvest the

biological space searching algorithms can be the basis for their

reverse-engineering for graph and tree search strategies.

Space searching algorithms a b R
2

Trace 0.82 1.39 0.85

Best-First-Search 0.81 1.42 0.86

A* 1.25 1.61 0.94

Dijkstra 1.20 1.94 0.99

Jump Point Search 0.71 2.03 0.91

Bio-Inspired Algorithm 1.00 2.19 0.96

Depth First Search (DFS) 0.83 2.42 0.91

Fig 8. Evolution of the computing time vs. maze size for BIA and standard

space search algorithms (top, logarithmic scale); and BIA and DFS (bottom)

1

10

100

10x10 15x15 20x20 30x35 50x35 70x35

R
u

n
 T

im
e

 (
s

e
c

)

Maze Size

BIA

Trace

Best-First-Search

A*

Jump Point Search

Dijkstra

DFS

0

30

60

90

120

150

20x20 30x30 40x40 50x50 60x60 70x70

R
u

n
 T

im
e

 (
s
e

c
)

Maze Size

BIA

DFS

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNB.2016.2567098

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Optimal Fungal Space Searching Algorithms TNB-00028-2016 6

IV. CONCLUSIONS

We compared the performance of the natural algorithm for

space search used by fungi, against several standard space

searching algorithms, both uninformed of the maze structure,

i.e., DFS algorithm, as well as informed ones, such as A*, Best

First Search, Jump Point Search, and Dijkstra.

The fungal natural algorithm consistently outperforms DFS,

and although it is inferior to other informed algorithms, e.g.,

A*, this under-performance does not increase with the increase

of the size of the maze. This result suggests that further studies

regarding the natural algorithms used by microorganisms with

regard to their optimality vs. artificial counterparts are

warranted, and perhaps overdue, and that they can lead to for

their reverse-engineering for graph and tree search strategies.

ACKNOWLEDGEMENTS

Financially supported by the European Union the European

Union Seventh Framework Programme (FP7/2007-2013, grant

agreements 228971, MONAD; 613044, ABACUS) and

Defense Advanced Research Projects Agency, grant agreement

N66001-03-1-8913.

APPENDIX A:

Pseudo-code of the Bio-Inspired Algorithm (BIA)

1. Initialization:

a. Create an array UnvisitedCell to store

unvisited cell locations

b. Start with an arbitrary direction to enter the

maze

c. Set DirectionalMemory(1) = the entering

direction

Begin

a. Move forward with the current direction until

bump into the wall (go to Directional Memory

Section) or corner (go to Corner-induced

Collision Branching)

b. Remove the visited cell locations away from

UnvisitedCell

2. Directional Memory

a. If cell collide on the wall

Follow the wall direction

End
b. Once the cell leave the wall, follow the

direction stored in DirectionalMemory

c. If not applicable

Select an arbitrary direction to restart

Update DirectionalMemory(n) = the new

direction

End

3. Corner-induced Collision Branching

a. If cell collide on the corner or the dead end

Generate a new branch from UnvisitedCell

Set DirectionalMemory(n) = the starting

direction

End

Repeat until the maze is solved

REFERENCES

[1] H. Cho, H. Jönsson, K. Campbell, P. Melke, J. W. Williams, B.

Jedynak, et al., "Self-organization in high-density bacterial

colonies: Efficient crowd control," PLoS Biology, vol. 5, pp.

2614-2623, 2007.

[2] D. Helbing, "Traffic and related self-driven many-particle systems,"
Reviews of Modern Physics, vol. 73, pp. 1067-1141, 2001.

[3] S. Binitha, S Siva, S, "A Survey of Bio inspired Optimization

Algorithms," International Journal of Soft Computing and
Engineering, vol. 2, pp. 137-151, 2012.

[4] K. L. Hanson, D. V. Nicolau Jr, L. Filipponi, L. Wang, A. P. Lee,

and D. V. Nicolau, "Fungi use efficient algorithms for the
exploration of microfluidic networks," Small, vol. 2, pp. 1212-1220,

2006.

[5] M. Held, C. Edwards, and D. V. Nicolau, "Probing the growth
dynamics of Neurospora crassa with microfluidic structures,"

Fungal Biology, vol. 115, pp. 493-505, 2011.

[6] M. Held, A. P. Lee, C. Edwards, and D. V. Nicolau, "Microfluidics
structures for probing the dynamic behaviour of filamentous fungi,"

Microelectronic Engineering, vol. 87, pp. 786-789, 2010.

[7] E. Korach and Z. Ostfeld, "Recognition of DFS trees: sequential and
parallel algorithms with refined verifications," Discrete

Mathematics, vol. 114, pp. 305-327, 1993.

[8] J. B. Kruskal, "On the shortest spanning subtree of a graph and the
traveling salesman problem," Proceedings of the American

Mathematical Society, vol. 7, pp. 48–50, 1956.

[9] E. A. Wasserman and T. R. Zentall, Comparative Cognition:
Experimental Explorations of Animal Intelligence, 2012.

[10] A. L. Nelson, E. Grant, J. M. Galeotti, and S. Rhody, "Maze

exploration behaviors using an integrated evolutionary robotics
environment," Robotics and Autonomous Systems, vol. 46, pp.

159-173, 2004.

[11] G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E. Da Luz, E.
P. Raposo, and H. E. Stanley, "Optimizing the success of random

searches," Nature, vol. 401, pp. 911-914, 1999.

[12] P. Barthelemy, J. Bertolotti, and D. S. Wiersma, "A Lévy flight for
light," Nature, vol. 453, pp. 495-498, 2008.

[13] A. M. Reynolds, "Deterministic walks with inverse-square

power-law scaling are an emergent property of predators that use
chemotaxis to locate randomly distributed prey," Physical Review E

- Statistical, Nonlinear, and Soft Matter Physics, vol. 78, 2008.

[14] P. Erdos and A. Rényi, "On the strength of connectedness of a
random graph," Acta Mathematica Academiae Scientiarum

Hungaricae, vol. 12, pp. 261-267, 1961.

[15] S. S. Skiena, The algorithm design manual: Second edition, 2008.
[16] M. J. Fuerstman, P. Deschatelets, R. Kane, A. Schwartz, P. J. A.

Kenis, J. M. Deutch, et al., "Solving mazes using microfluidic

networks," Langmuir, vol. 19, pp. 4714-4722, 2003.
[17] T. Nakagaki, H. Yamada, and Á. Tóth, "Maze-solving by an

amoeboid organism," Nature, vol. 407, p. 470, 2000.

[18] S. Park, H. Hwang, S. W. Nam, F. Martinez, R. H. Austin, and W. S.
Ryu, "Enhanced Caenorhabditis elegans locomotion in a structured

microfluidic environment," PLoS ONE, vol. 3, 2008.
[19] S. Park, P. M. Wolanin, E. A. Yuzbashyan, H. Lin, N. C. Darnton, J.

B. Stock, et al., "Influence of topology on bacterial social

interaction," Proceedings of the National Academy of Sciences of
the United States of America, vol. 100, pp. 13910-13915, 2003.

[20] S. Park, P. M. Wolanin, E. A. Yuzbashyan, P. Silberzan, J. B. Stock,

and R. H. Austin, "Motion to form a quorum," Science, vol. 301, p.

188, 2003.

[21] P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis for the

Heuristic Determination of Minimum Cost Paths," IEEE
Transactions on Systems Science and Cybernetics, vol. 4, pp.

100-107, 1968.

[22] A. G. Pipe, T. C. Fogarty, and A. Winfield, "Balancing exploration
with exploitation - Solving mazes with real numbered search

spaces," in IEEE Conference on Evolutionary Computation -

Proceedings, 1994, pp. 485-489.
[23] D. Harabor and A. Grastien, "Improving jump point search," in

Proceedings International Conference on Automated Planning and

Scheduling, ICAPS, 2014, pp. 128-135.
[24] E. W. Dijkstra, "A note on two problems in connexion with graphs,"

Numerische Mathematik, vol. 1, pp. 269-271, 1959.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNB.2016.2567098

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

