

PAPER • OPEN ACCESS

As good as it gets: a scaling comparison of DNA
computing, network biocomputing, and electronic
computing approaches to an NP-complete
problem
To cite this article: Ayyappasamy Sudalaiyadum Perumal et al 2021 New J. Phys. 23 125001

View the article online for updates and enhancements.

You may also like
Computing quantum discord is NP-
complete
Yichen Huang

-

Facile and green synthesis of silver
nanoparticles in quaternized
carboxymethyl chitosan solution
Bo Liu, Xiaoyun Li, Canfeng Zheng et al.

-

Design of network-based biocomputation
circuits for the exact cover problem
Till Korten, Stefan Diez, Heiner Linke et al.

-

This content was downloaded from IP address 24.200.158.25 on 22/12/2021 at 13:30

https://doi.org/10.1088/1367-2630/ac3883
/article/10.1088/1367-2630/16/3/033027
/article/10.1088/1367-2630/16/3/033027
/article/10.1088/0957-4484/24/23/235601
/article/10.1088/0957-4484/24/23/235601
/article/10.1088/0957-4484/24/23/235601
/article/10.1088/1367-2630/ac175d
/article/10.1088/1367-2630/ac175d

New J. Phys. 23 (2021) 125001 https://doi.org/10.1088/1367-2630/ac3883

OPEN ACCESS

RECEIVED

25 June 2021

REVISED

31 October 2021

ACCEPTED FOR PUBLICATION

10 November 2021

PUBLISHED

6 December 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

As good as it gets: a scaling comparison of DNA computing,
network biocomputing, and electronic computing approaches
to an NP-complete problem

Ayyappasamy Sudalaiyadum Perumal1,4 , Zihao Wang2,4, Giulia Ippoliti1,
Falco C M J M van Delft3 , Lila Kari2,∗ and Dan V Nicolau1,∗

1 Department of Bioengineering, McGill University, Montreal, Canada
2 School of Computer Science, University of Waterloo, Waterloo, Canada
3 Molecular Sense Ltd, Liverpool, United Kingdom
∗ Authors to whom any correspondence should be addressed.
4 These authors contributed equally to this work.

E-mail: lila.kari@uwaterloo.ca and dan.nicolau@mcgill.ca

Keywords: unconventional computing, natural computing, DNA computing, network biocomputing, NP-complete problem, subset
sum problem

Abstract
All known algorithms to solve nondeterministic polynomial (NP) complete problems, relevant to
many real-life applications, require the exploration of a space of potential solutions, which grows
exponentially with the size of the problem. Since electronic computers can implement only limited
parallelism, their use for solving NP-complete problems is impractical for very large instances, and
consequently alternative massively parallel computing approaches were proposed to address this
challenge. We present a scaling analysis of two such alternative computing approaches, DNA
computing (DNA-C) and network biocomputing with agents (NB-C), compared with electronic
computing (E-C). The Subset Sum Problem (SSP), a known NP-complete problem, was used as a
computational benchmark, to compare the volume, the computing time, and the energy required
for each type of computation, relative to the input size. Our analysis shows that the sequentiality of
E-C translates in a very small volume compared to that required by DNA-C and NB-C, at the cost
of the E-C computing time being outperformed first by DNA-C (linear run time), followed by
NB-C. Finally, NB-C appears to be more energy-efficient than DNA-C for some types of input sets,
while being less energy-efficient for others, with E-C being always an order of magnitude less
energy efficient than DNA-C. This scaling study suggest that presently none of these computing
approaches win, even theoretically, for all three key performance criteria, and that all require
breakthroughs to overcome their limitations, with potential solutions including hybrid computing
approaches.

1. Introduction

Nondeterministic polynomial time complete (NP-complete) problems are the mathematical representations
of many and very diverse real-life applications, such as protein design [1] and folding [2], data clustering in
networks [3], circuit verification [4], optimal routing [5], and formal contextual reasoning [6]—to name
just a few. Because of the exponential increase of the solution space with the problem input size, electronic
computers—including high-end supercomputers—cannot solve large instances of NP-complete problems,
since they operate with limited parallelism at best. Electronic computers face additional difficulties, such as
reaching their fundamental physical limits of the gate size, which is already in the couple of nanometers, or
engineering-related limits, e.g. required energy, and heat dissipation. All these difficulties challenge the
sustainability of Moore’s law [7, 8], which predicts the doubling of computing power approximately every
two years. Consequently, alternative computational paradigms capable of massively parallel operations were
proposed since the mid-1990s [9, 10]. Inspired by the natural massive parallelism of biological systems,

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac3883
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-1360-9152
https://orcid.org/0000-0002-3234-2211
https://orcid.org/0000-0002-9956-0600
mailto:lila.kari@uwaterloo.ca
mailto:dan.nicolau@mcgill.ca

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

many of these alternative computational paradigms use biological entities, from molecular to cellular, in
vitro or in vivo, to solve computational problems. The large variety of biocomputation approaches
combined with the fact that they are not yet standardized, precludes a direct comparison of their respective
scalability, as well as a comparison with the ‘classical’ electronic computing.

This study compared key performance parameters of three fundamentally different computing
approaches: two massively parallel biocomputation approaches, that is, the DNA computing [9], DNA-C,
and the more recently reported network biocomputing using motile agents [11, 12], NB-C; with the
classical electronic computing, (E-C). To achieve a fair analysis all these computing approaches were
employed to solve the same benchmark NP-complete problem, that is, the subset sum problem (SSP).
Because quantum computing (QC) is presently evolving very fast, with a large variety of reports regarding
performance parameters, and with no report of solving SSP, the present scaling comparison could not be
extended to QC. In comparing the DNA-C, NB-C, and E-C approaches for solving SSP, the key operating
parameters surveyed comprised the pre-computing costs (section 3.1), the volume need for the
computation (section 3.2), the run time (section 3.3), and the energy costs (section 3.4), all calculated using
the experimental parameters and estimation methodology reported previously [11–13]. Potential solutions,
including hybrid computing approaches, are discussed in section 4.

2. Solving the Subset Sum Problem with various computational approaches

2.1. NP-complete problems and the Subset Sum Problem

A problem is called nondeterministic polynomial time (NP) if a guessed solution can be verified in
polynomial time, where ‘nondeterministic’ means that no particular rule is used to make the guess [14]. A
characteristic feature of NP problems is that all known algorithms for solving them take a computing time
that grows exponentially with the input size. Whether or not polynomial time algorithms exist for NP
problems is one of the foremost open problems in computer science. If a problem is NP, and all other NP
problems are reducible to it in polynomial time, then the problem is called NP-complete. It follows that, if a
polynomial time algorithm were found for a single NP-complete problem, then all NP problems would be
solvable in polynomial time (it is widely believed that this is not the case). Thus, every NP-complete
problem is significant, and one of the most well-known NP-complete problems is the SSP, defined below.

The subset sum problem (SSP, see e.g. [15]), asks the following yes/no question: ‘given a finite input set
S ⊂ N of positive integers and a positive integer target number t ∈ N , does there exist a subset S′ ⊆ S such
that t = Σs∈S′S ?’ Note that other variants of SSP allow the input set S to be a multiset, which allows
repetitions of its elements. An instance of SSP consists of a particular set S and a particular target number t,
and the size of the instance is defined as the cardinality of the input set S. Note that each instance of SSP has
a yes/no answer. For example, for the SSP instance of size 3 with input set S = {2, 3, 9} and target number
t = 5, the answer is ‘yes’, and the subset of numbers that add up to t = 5 is S′ = {2, 3} (the ‘yes’ answer is
the solution to this instance of the problem). In computer science, solving SSP means finding an algorithm
that outputs the correct solution (yes/no answer) for all instances. In the case of a ‘yes’ answer, there is the
optional step to identify the subsets that fulfill the required condition. Both variants of SSP (the yes/no
answer variant, and that of listing all solutions in the case of a ‘yes’ answer) are NP-complete.

Unconventional biocomputing approaches to solving instances of NP-complete problems used a large
variety of biological agents, from DNA molecules to multicellular organisms (table 1 provides a
non-exhaustive summary).

2.2. DNA computing (DNA-C)

This section presents an overview of the main idea behind DNA-C, as well as the molecular biology tools
used for the implementation of DNA-C, followed by a detailed description of the wet lab implementation of
DNA-C procedure for solving several instances of SSP, based on a previous report [13].

2.2.1. DNA computing overview

In the same way the letters of the alphabet are used to write text, and the bits 0 and 1 are used to write
computer machine code, the four basic DNA units, adenine (A), cytosine (C), guanine (G), thymine (T),
are used by nature to write genetic information as DNA strands. The possibility of encoding symbolic
information on DNA, and the fact that biochemical processes such as cut-and-paste of DNA strands have
been proved to be able to implement arithmetic and logic operations, led to the development of the field of
DNA-C and molecular programming [9]. The three main steps of a DNA-C are: (1) encoding the input
information as DNA strands, (2) DNA computation, and (3) reading the output of the DNA computation.

2

N
ew

J.P
hys.23

(2021)
125001

A
Su

dalaiyadu
m

Peru
m

aletal

Table 1. Unconventional biocomputing approaches to solving instances of NP-complete problems. Only biocomputation procedures that were experimentally demonstrated are included.

Agent Problem Cardinality Methodology References

DNA

Directed HPP 7 nodes Annealing, PCR, extraction, gel electrophoresis [9]
Maximal independent set 6 vertices Cutting, pasting, cloning, gel electrophoresis, sequencing [16]
Minimal dominating set 6 vertices Protein expression, cutting, pasting, cloning, PCR, gel electrophoresis [17]

Knapsack/SSP
7 Protein expression, cutting, pasting, cloning, gel electrophoresis, sequencing [13]
3 Pasting, PCR, gel electrophoresis, annealing, sequencing [18]
3 Cutting, pasting, gel electrophoresis, annealing [19]

Satisfiability (3-SAT)

6 and 20 variables PCR, sequencing, extraction, gel electrophoresis, annealing, pasting [20, 21]
3 Extraction, exonuclease digestion, PCR, annealing [22]
6 Annealing (hairpins), cutting, pasting, PCR, sequencing, gel electrophoresis [23]
4 Competitive hybridization, extraction [24]
4 Cutting, pasting (ligase chain reaction), gel electrophoresis, cloning, extraction, sequencing [25]

Maximal Clique 6 vertices Annealing, overlap extension by polymerase chain reaction (PCR), gel electrophoresis, cloning, sequencing, cutting [26]
Maze 10-vertex rooted tree with three junctions Strand displacement, hybridization chain reaction [27]

Motor proteins SSP SSP N = 4 Nano-fabricated microfluidic network-based [11]
Amoebae Maze 5-by 5-unit cell maze Macroscopic network network-based [28]

Bacteria
HPP 3 In vivo cell based [29]
Maze 10-by 10-unit cell maze Nutrient stimuli-based solutions [30]

15-by 15-unit cell maze No-nutrient stimuli, non-reward system [31]

Slime mold
Steiner tree Up to 12-point Agar based network paths using plastic boundaries [32, 33]
HPP (TSP) 20 cities Agarose based surface spots representing the cities [34]

Maze 5-by 5-unit cell maze Macroscopic network network-based [28]

Fungi
Maze 15-by 15-unit cell (open mazes) No-nutrient stimuli, non-reward system [35]

Small and large mazes [36]

C. elegans
Maze Six T-maze and complex U-maze Macroscopic networks [37]
TSP 6 station Large rooms (7 m by 5 m) with selected station as 2D color patterns [38]

Maze 5 by 4-unit cell (unique solution) Compartment based, macroscale [39]
Ants Maze 16 by 16 Non-unique maze solutions [40]

Maze

14-unit T-maze Chamber type of units, reward and non-reward maze-solving strategies [41]
Complex organisms, 8-arm radial maze [42]

e.g., rats, mice, 8-arm radial maze [43]
pigeons, etc 8-arm radial maze [44]

8 arm and 4-arm radial maze [45]

3

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

Step 1: encoding information as DNA. A DNA single strand consists of four different types of units called
nucleotides or bases strung together by an oriented backbone, the distinct ends of which are denoted by 5′,
and 3′, respectively. Moreover, A can chemically bind to T, while C can similarly bind to G, in a process
called Watson–Crick complementarity (or simply complementarity). Two DNA single strands with opposite
orientation and with complementary bases at each position can bind to each other to form a DNA double
strand in a process called base pairing.

To encode information using DNA, one first selects an encoding scheme, mapping symbols onto strings
over the DNA alphabet {A, C, G, T}, and then proceeds to synthesize the obtained information-encoding
strings as DNA single or double strands. For example, the letters of the Latin alphabet were encoded using
triplets, e.g. a = CGA, b = CCA, c = GTT, d = TTG, e = GGT, r = TCA, n = TCT, o = GGC, and
t = TTC, etc [46]. With this encoding, the English text ‘to be or not to be’ becomes the DNA strand

5′—TTC GGC CCA GGT GGC TCA TCT GGC TTC TTC GGC CCA GGT—3′

which can be readily synthesized. DNA synthesis is the most basic biochemical operation used in DNA
computing. DNA solid-state synthesis is based on a method by which the initial nucleotide is bound to a
solid support, and successive nucleotides are added step-by-step, from the 3′ to the 5′ direction, in a
reactant solution. While the above encoding example is purely hypothetical, DNA strands of lengths of up
to 1000 bp can be readily synthesized, using fully automated DNA synthesizers, in under 24 h [47]. The
synthesis of DNA strands longer than 10 kbp is more challenging and time consuming. There are two major
approaches to synthesizing such strands, i.e. chemical synthesis and enzymatic synthesis, both involving
multiple rounds of synthesis of short DNA fragments, followed by their assembly into longer DNA strands.
A commonly used tool like BioBrick assembly [48] could take 30 days to 45 days to synthesize DNA strands
longer than 10 kbp. The estimate for the total duration to synthesize DNA strands longer than 5 kbp is
based on commercial gene synthesizing services like Integrated DNA Technology [49], Codex [50], Twist
Biosciences [51], Eurofins [52] and Genscript [53, 54], using the specifications from their respective
websites.

In most experiments, DNA-encoded information is not associated to a memory location but consists of
free-floating DNA strands which, due to Watson–Crick complementarity, can interact with each other in
programmed, but also undesirable ways. Exceptions are surface-based DNA-C experiments [22, 55],
wherein data-encoding DNA strands are fixed to a solid surface, raising different challenges.

Step 2: DNA computation. A DNA computation consists of a succession of biochemical operations. The
following is a list of the main biochemical operations used in the DNA-C experiments.

(a) Watson–Crick base pairing (hybridization, annealing), due to the Watson–Crick complementarity of
bases (A with T, and C with G), is the principal biochemical operation underlying most, if not all, DNA
computations. Watson–Crick base pairing was utilized in the first proof-of-concept DNA-C
experiment, which solved a seven-node instance of the Hamiltonian path problem [9]. It was also used
in the DNA-C experiment that solved a 20-variable instance of the 3-SAT (satisfiability) problem, which
marked the first instance of a DNA computation solving a problem beyond the normal range of
unaided human computation [21]. Lastly, Watson–Crick base pairing was the crucial computational
biochemical operation used in algorithmic self-assembly of DNA tiles utilized, e.g. for the
implementation of logic gates [56], stochastic computing [57], the implementation of cellular automata
[58], or in molecular algorithms using reprogrammable DNA self-assembly [59].

(b) Cutting (restriction enzyme digestion) is a biochemical operation implemented by restriction
endonuclease enzymes. Such a restriction enzyme cuts double-stranded DNA into fragments at, or
near, an enzyme-specific pattern known as restriction site. The result of cutting a DNA double strand at
a restriction site (by cutting the backbones of each of its two component single strands) is either two
partially double-stranded DNA strands with single-stranded ‘sticky-ends’, or two fully double-stranded
DNA strands with ‘blunt ends’. Some enzymes cut non-specifically, outside their restriction site, and
they have also been employed for computations, e.g. in the wet lab implementation of a programmable
finite automaton using the FoKI enzyme [60, 61]. The DNA-C experiment that solves an instance of the
SSP, described in section 2.2.2, uses two restriction enzymes that each cuts a DNA double strand at a
specific recognition site, with the result being two partially double-stranded DNA molecules with sticky
ends.

(c) Pasting (ligation) is a biochemical operation that accomplishes the opposite of cutting. It is
implemented by DNA ligase enzymes that can join together DNA strand backbones. Some DNA ligases
join together partially double-stranded DNA strands with complementary sticky-ends, while others
join together blunt-ended DNA strands.

4

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

(d) Polymerase chain reaction (PCR) is often used in DNA-C experiments to amplify, i.e. produce an
exponential increase of DNA single strands called templates. PCR is executed by the DNA polymerase
enzyme, which extends a primer (short DNA sequence that base pairs to one end of the template),
nucleotide by nucleotide, until it produces a full Watson–Crick complement of the template. This
biochemical operation has also been specifically used in the implementation of a finite state machine by
hairpin formation, using whiplash PCR [23].

(e) Gel electrophoresis for separation of DNA strands by length was used, e.g. for extracting the DNA
strands encoding the solution to the Hamiltonian path problem [9], or for extracting the solution to
the SSP [13].

(f) Extraction of DNA strands that contain a certain pattern as a substrand, by affinity purification, is a
biochemical operation that was used, e.g. [9], for selecting the paths that pass through a given node.

(g) DNA strand displacement (toehold-mediated or polymerase-based) is a more recent biochemical
operation used, e.g. to implement DNA-based artificial neural networks that can recognize 100 bit
hand-written digits [62–64]. It was also used in computing the square-root of a number [65], for
building full adders and logic gates [66], and to implement chemical reaction networks [67]. In
addition, DNA strand displacement was used in localized DNA computing, whereby logic circuits are
implemented by spatially arranging reactive DNA hairpins on a DNA origami surface [55], potentially
reducing the computation time by orders of magnitude.

Step 3: reading the output of the DNA computation. At the end of a DNA computation, the DNA strands
representing the output of the computation can be sequenced (read out) and decoded.

One sequencing method uses special chemically modified nucleotides (dideoxynucleoside
triphosphates—ddNTPs), that act as ‘chain terminators’ during PCR, as follows. A sequencing primer is
annealed to the DNA template to be read. A DNA polymerase then extends the primer. The extension
reaction is split into four tubes, each containing a different chain terminator nucleotide, mixed with
standard nucleotides. For example, tube C would contain chemically modified C (ddCTP), as well as the
standard nucleotides (dATP, dGTP, dCTP, and dTTP). In this tube, extension of the primer by the
polymerase enzyme produces all prefixes ending in G of the complement of the original strand. A
separation of these strands by length, using gel electrophoresis, allows the determination of the position of
all Gs (complements of Cs). Combining the results obtained in this way for all four nucleotides allows the
reconstruction of the original sequence.

Thousands of genomes have been sequenced since the completion of the human genome project [68],
using a technique called shotgun sequencing, whereby short genome fragments called ‘reads’ are sequenced,
and computer programs then use the overlapping ends of different reads to assemble them into a
continuous sequence. Such conventional methods for reading the output of a DNA computation, including
illumina-based sequencing methods, are straightforward, rapid, and accurate (1% maximum error), and
DNA sequences of the size of the human genome (over 3 billion base pairs) can now be sequenced in 1 to 3
days [69]. In contrast with these approaches, nanopore-based sequencing techniques are now preferred for
their speed, small size of the sequencer, and convenience of use, despite being more error-prone
(10% maximum error). Such single-molecule sequencers could process as many as 16 000 reads
simultaneously, by using a parallel operating array of nanopores. Using nanopore sequencing methods,
DNA strands of a total length of up to 90 million base pairs (with contiguous DNA strands as long as
60 000 bp being read) can be sequenced in 18 h [69, 70].

The three steps of a DNA-C procedure, described above (encoding the input information as DNA
strands, the actual DNA computation, and reading out the output of the DNA computation), were used to
solve instances of NP-complete problems, such as the Hamiltonian path problem [9], satisfiability problem
[20–22, 71, 72], Knapsack problem and its variant, SSP [13, 18, 19], and maximum Clique problem [26].

2.2.2. DNA computing procedure for solving SSP
Existing DNA-C for solving SSP can be categorized as either theoretical DNA algorithms with no
experimental implementation [73, 74], or DNA algorithms with a wet lab experimental implementation
[13, 18]. The latter are based on the idea of expressing each subset S′ of the input set S as a unique path in a
special type of directed weighted graph, as illustrated in figure 1.

If the input set is S = {s1, . . . , sn}, the corresponding graph has n + 1 nodes, a designated start node
labelled 0, and a designated end node labeled n. For each 1 � j � n, the node labeled j corresponds to the
number sj in S, and two consecutive nodes are connected by exactly two directed edges. Each path between
node 0 and node n uniquely represents a subset S′ of S, as follows. The presence or absence of a number sj

in S′ is indicated by the path representing S′ traversing either one, or the other (but not both), of the two
edges that connect node (j − 1) to node j: if sj is in S′ then the path traverses the ‘top’ edge, and if sj is not
in S′ then the path traverses the ‘bottom’ edge instead (see figure 1). In addition, the weights of the two

5

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

Figure 1. An SSP instance of size n with input set S = {si|1 � i � n} can be represented by a directed weighted graph with
(n + 1) nodes and designated start and end vertices, as illustrated above. In this graph, each subset of S corresponds to a unique
path from the start node (red) to the end node (green), and vice versa. Any such path has to pass through all the nodes of the
graph. If, when connecting node (j − 1) with node j, 1 � j � n, the path traverses the top edge (thick line), this indicates that the
subset it represents contains the number sj . If, instead, the path traverses the bottom edge (thin line), this indicates that the subset
it represents does not contain the number sj. The edges are weighted, with the weights of the top and bottom edges being
(bi + c · si), and respectively bi , for 1 � i � n.

edges that connect consecutive nodes are different, so that the length of each start-to-end path (the sum of
the weights of its edges) corresponds to the sum of the numbers in the subset that it represents.

This conceptual design can be physically implemented by first encoding each directed weighted edge as a
DNA strand of a certain length. This is followed by the generation of a combinatorial library of DNA
strands encoding all possible start-to-end paths (concatenations of edges/strands) through the graph, which
in turn represent all possible subsets of S. The next step is the physical extraction, from this library, of the
DNA strands of the desired length representing the solutions to the SSP instance. The length of such an
SSP-solution-representing DNA strand is determined based on the target number t specified by that SSP
instance. In practice, experimental considerations dictate the introduction of additional parameters c and
b1, . . . , bn, whereby the weight of the edge signaling the presence of si in a subset is (bi + c · si), while the
weight of the edge signaling the absence of si in a subset is bi. For example, the set S itself is represented by
the start-to-end path that traverses all the ‘top’ edges in the graph, and the DNA strand that encodes it has
the expected length

∑
1�i�n (bi + c · si). In contrast, the empty set ∅ is represented by the start-to-end path

that traverses all the ‘bottom’ edges in the graph, and the (much shorter) DNA strand that encodes it has
the expected length

∑
1�i�n bi. For a target number t, a subset S′ of S whose elements sum up to t exists, if

and only if there exists a start-to-end path in the graph, encoded by a DNA strand of length∑
1�i�n bi + c · t.
Both [13, 18] are based on the concept above, with [18] solving an instance of SSP of size n = 3 with

input set S = {2, 3, 4}, target number t = 5, and parameters c = 10, b1 = 25, b2 = b3 = 20, and [13] solving
two instances of SSP of size n = 8 and input set S = {21, 45, 36, 51, 36, 36, 36, 36}, one with target number
t = 104 and another with target number t = 174, and parameters c = 1, bi = 6, 1 � i � 8.

The wet lab experimental details of the more recent of the two DNA-C procedures for SSP [13], is
described further. For a direct comparison with NB-C, this DNA-C procedure must be applicable also to
SSP instances with small numbers in the input set (in particular, numbers smaller than the length of the
restriction sites of the enzymes used in the DNA computation). To this end, in the description below, the
parameters c = bi = k, 1 � i � n, are used, where k is the length of the restrictions sites of all enzymes
employed in the experiment.

The DNA-C procedure for solving SSP comprises three steps: the pre-computing step, the solution
generation step, and the result readout step.

In the pre-computing step, the natural numbers comprising the input set S = {s1, . . . , sn}, of an SSP
instance of size n, are encoded into a ‘computing region of S’ that is inserted into a plasmid (a circular DNA
double strand), as follows (figure 2, left panel, top). To each number si, 1 � i � n, one associates a
restriction enzyme ei with restriction site ri of length k. In addition, two unique restriction enzymes estart

and eend, with restrictions sites rstart and rend (also of length k) are used, as delimiters of the computing
region of S, as defined later. The enzymes were chosen so that all restriction sites are different from each
other. Each restriction enzyme ei, i ∈ {1, 2, . . . , n} ∪ {start, end}, cuts according to a specific pattern, and its
restriction point (the location of its cut) is after the ki-th base of its restriction sequence, from the 5′ end.
Also, in this experiment all restrictions sites are palindromic, so ki uniquely describes the cuts on both
strands.

Next, for each number si, 1 � i � n, a DNA strand of length k + (k · si − k) + k = k (si + 1), called
station is designed, consisting of the concatenation of three sequences: the recognition site ri, a specially
designed ‘middle sequence’ of length k · si − k, and a second copy of ri.

In the DNA-C procedure for SSP [13], the enzyme estart is XbaI and the enzyme eend is HindIII, with the
respective restriction sites shown below, with kstart = kend = 1:

6

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

Figure 2. The DNA-C procedure [13] for solving an instance of SSP. Left panel, bottom: visual figure legend. Left panel, top: the
natural numbers comprising the input set S = {s1, . . . , sn}, of an SSP instance of size n, are encoded into a ‘computing region of S’
inserted into a plasmid. Center-left panel: the plasmid is amplified by using some bacteria. Center-right panel: the pool
comprising all DNA strands representing candidate SSP solutions is generated, by a succession of split-and-merge substeps, using
restriction enzymes, purifications by agarose gel electrophoresis, and ligations. Right panel, bottom: the DNA strands
representing the candidate SSP solutions are length-separated by agarose gel electrophoresis. Right panel, top: the DNA
sequences of the desired length are extracted, amplified (optionally), and sequenced.

5′—T↓CTAGA—3′ 5′—A↓AGCTT—3′

3′—AGATC↑T—5′ 3′—TTCGA↑A—5′

The input set S will now be encoded by a double-stranded DNA molecule, called the computing region of
S, which consists of the concatenation of the recognition site rstart, one station for each of the input numbers
si, 1 � i � n, and the recognition site rend. The recognition sites and middle sequences were carefully
designed so that rstart and rend occur exactly once (at the beginning, respectively at the end of the computing
region of S), and each ri, 1 � i � n, occurs exactly twice in the computing region of S (once at the
beginning and once at the end of the station for si).

Using this encoding scheme, a DNA strand representing the computing region of the input set S is
synthesized and inserted into a base plasmid containing one copy of the recognition site rstart and one copy
of the recognition site rend (with no overlap), by using the respective restriction enzymes and ligation. Care
must be taken with the encodings and choice of plasmid, so that the restriction sites occur only in the
designated places. As shown in figure 2, center-left panel, this base plasmid is then inserted into bacteria,
such as Escherichia coli (E. coli), and amplified (exponentially multiplied) to the amount necessary for the
ensuing DNA computation. The generated plasmids are then extracted from bacteria and transferred to a
test tube.

In the solution generation step, the objective is to generate the space of all potential solutions for this
SSP instance, by creating all different plasmids with a computing region representing a subset of the input
set. The computing region of a subset S′ of S will consist of the concatenation of the restrictions site rstart,
followed by the ordered concatenation of n DNA strands, each representing the presence or absence of a
number si in S′, and followed by the restriction site rend. More precisely, if the number si belongs to S′ then
the station of si (which includes two copies of ri) is present at the i-th location in the computing region of
S′, while if si does not belong to S′ then a single copy of ri is present at the ith location in the computing
region of S′. The length of the DNA double strand encoding the computing region of a subset S′ is:

LS′
DNA (n) = k + k ·

(
n − card

(
S′
))

+
∑
sj∈S′

k
(
sj + 1

)
+ k (basepairs) .

7

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

The generation of the combinatorial library of solution candidates can now proceed by a succession of
split-and-merge substeps, as follows (figure 2, center-right panel). The content of the initial test tube T,
containing the plasmid with the computing region of S, is evenly split into two tubes T1 and T2. Next, while
tube T2 remains intact, the plasmids in tube T1 are digested by the restriction enzyme e1 in order to cut out
the station representing the number s1, and the resulting linear DNA molecules are ligated back into
circular DNA molecules (after purification by agarose gel electrophoresis, to separate and extract out the
DNA strands encoding the station representing s1). Following this, the contents of the new T1 and T2 are
merged into a tube T ′, which now comprises plasmids of two types: half of the plasmids have computing
region of subsets containing s1, and the other half of the plasmids have computing regions of subsets that do
not contain s1. This succession of split-and-merge substeps is repeated for each of the remaining numbers in
S, resulting in a final tube that contains a combinatorial library of plasmids with computing regions
spanning all possible subsets of S.

In the result readout step, the possible solution candidates are separated by high resolution
electrophoresis, e.g. non-denaturing polyacrylamide gel electrophoresis, PAGE, or 2% agarose gel
electrophoresis. The existence of an SSP solution is determined by the presence or absence of a band on the
gel corresponding to the desired DNA strand length (figure 2, right panel, bottom). Optionally, the DNA
strands in the band indicating a solution can then be sequenced (figure 2, right panel, top).

More precisely, the plasmids in the final test tube are first cut by the restriction enzymes estart and eend,
resulting in linear DNA molecules representing all possible subset sum combinations for the set S. If a
solution to the given SSP instance exists, that is, if there exists a subset S′ of numbers in S that contains
numbers adding up to the target number t (that is,

∑
sj∈S′ sj = t), then a band with DNA strands of length

LS
DNA (n) − kstart − kend −

∑
sj∈S\S′

ksj = LS
DNA (n) − kstart − kend −

⎡
⎣
⎛
⎝∑

si∈S

ksi

⎞
⎠− kt

⎤
⎦

will be detected on the gel, and the answer to this instance of SSP is ‘yes’. In this case one can, optionally,
sequence each DNA strand representing an SSP solution, to identify the corresponding subset of numbers
in S that sum up to t (there can be several such subsets). To determine such a subset S′, for every number si,
1 � i � n, its presence or absence in S′ can be determined by checking the number of occurrences of the
recognition site ri in the DNA sequence representing S′ (two occurrences of ri if si ∈ S′, and one occurrence
of ri if si /∈ S′).

Alternatively, if there is no band on the gel corresponding to the aforementioned expected length, then
the answer to this instance of SSP is ‘no’.

2.3. Network biocomputing (NB-C) for solving SSP

Unlike electronic computers, which perform operations in silico, NB-C uses motile biological agents that
explore and perform ‘operations’ in a physical space, designed according to the problem to be solved. These
special features of NB-C have interesting consequences for the scaling of computation.

2.3.1. Technology of NB-C with motile agents
Various implementations of massively parallel computation using motile agents, be they abiotic, e.g.
photons [75, 76], beads [77, 78], or biological, e.g. cytoskeletal filaments (actin filaments, or microtubules,
propelled by protein molecular motors, i.e. myosin, or kinesin, respectively) [11, 79], microorganisms
[31, 36, 80, 81], were proposed to solve NP-complete problems. In most general terms, NB-C with motile
agents comprises three stages: (i) design of a graph encoding of the NP-complete problem, which is
translated into the layout of a physical network, manufactured by micro- or nano-fabrication; (ii) stochastic
exploration of the network by large number of autonomous and independent motile agents, each being
analogous to a CPU [12]; and (iii) solution(s) generated as a result of network exploration are derived from
the number of agents exiting the encoded network endpoints, and from the agent trajectories. The
exploration of the computational networks requires that the motile agents are self-propelled, independent
of each other, and easily visible, and to the extent possible reasonably small and moving at reasonable high
velocity. Essentially, abiotic motile agents do not fulfill the first desideratum, and consequently NB-C using
these agents is fundamentally ineffectual. In contrast, the large variety of motile biological agents offer the
opportunity of selecting those that fulfill these requirements. Consequently, the following discussion will
refer solely to NB-C. Massively parallel computation employing motile biological agents was proposed to
solve NP-complete problems, such as SSP [11, 79]. This computation is a three-stage approach: the first
stage is graph-based encoding of a NP-complete problem, which is fabricated to physical network by
lithographic techniques. Next, this network is explored stochastically by large number of autonomously

8

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

motile biological entities independent of each other. Each and every biological agent exploring the network
is analogous to a ‘moving processor’ (pseudo-CPU) [12]. Finally, the solution(s) generated as a result of
exploring the networks were derived from the number of agents exiting the networks at the network
endpoints and from the agent trajectories.

2.3.2. NB-C method for solving SSP

With the notable exception of the Clique problem [82], all implementations of NB-C with motile agents
solved SSP [11, 75, 76], because of the easy, 2D graphical translation into a physical network. Consequently,
the following discussion focuses on the details of the implementation of NB-C for solving SSP. NB-C
comprises three steps, detailed as follows:

Step 1: pre-computing (encoding NP-complete problem followed by physical fabrication and agent
preparation). The encoding of an NP-complete problem into a graph [83], followed by its translation into a
physical network, which in addition to the parent graph has set dimensions, e.g. lengths, widths, results into
a grid with an array of connected junctions. These junctions (unit cells) impose a set of traffic rules for the
exploring motile agents. As long as the agents follow the rules when passing through the junctions, correct
solutions will be explored for a problem set [11, 12]. The translation of NP-complete problems, from
graphs to vector-based graphical networks, uses computer-aided design tools, e.g. AutoCAD. The designed
network has micro- or nano-fluidic dimensions, optimized to allow the seamless exploration by the
biological agents obeying junction rules. For example, if protein molecular motor-propelled cytoskeletal
filaments are chosen, the network channel dimensions and surface modifications are tailored to
accommodate agents to freely traverse the network [11]. The size of a unit cell in the computation network
for different biological agents, including sub-cellular motile components to multi-cellular organisms was
described elsewhere [12]. While the art of translating NP-complete problems to a physical network remains
universal across any agent-based computing, the fabrication approach needs to be optimized for the motile
agents used for computation. For example, for bacterial-driven NB-C the fabrication of the silicon masters
for computational networks, subsequently replicated by PDMS-based soft lithography, the low resolution
SU-8-based optical lithography is sufficient (although e-beam lithography has important advantages).
However, for (considerably smaller) cytoskeletal filaments-driven NB-C, high resolution e-beam
lithography needs to be used for the fabrication of the computational networks directly in silicon wafers.
Furthermore, for bacterial-driven NB-C the PDMS-made computational networks, must be treated with
plasma then sealed and filled with nutrient medium conducive for the bacterial-driven network exploration
[80], as opposed to the protein motors-functionalized networks used for cytoskeletal filaments, which are
uncapped to allow the access to ATP-rich fluids present above the computational space.

The design of the network encoding SSP was firstly reported [83], then demonstrated via its exploration
by cytoskeletal filaments [11], photons [75], and recently proposed by bacteria [80, 81]. Although the
demonstration of proof of concept in solving SSP by NB-C using motor proteins and cytoskeletal proteins
and photons is presently more advanced, microorganisms, especially bacteria, present certain advantages, as
follows: (i) resilience in living in confined spaces, without or with limited oxygen (facultative anaerobic);
(ii) high speed of up to 0.2 mm sec−1 (for Vibrio comma); (iii) small sizes in the μm-range; (iv) various
motility patterns, e.g. closer or away from walls, different and stochastic motility behaviors; (v) availability
of a large panoply of molecular techniques for the genetic engineering of bacteria. Additionally, bacteria
have the inherent ability to multiply in confined spaces, thereby the possibility to operate, at the theoretical
limit, booting the computation with only one agent. If the model bacterium would be the common E. coli,
which can be genetically engineered to express fluorescence, and in an active mid-log phase culture, the
dimensions of the computing agent would be an average of 0.5 μm by 1 μm. Accordingly, the channel
dimensions would be, tentatively, 2 μm width and 5 μm depth. These dimensions would prevent bacteria
from making U-turns and other illegal paths, thereby obeying the logic operations in the network junctions.

Step 2: solution generation (stochastic exploration of the network by agents, e.g. bacteria). The design of the
SSP computation device using a molecular motor-cytoskeletal protein system follows the benchmark work
[11]. The calculation-proper comprises the exploration of the network by motile agents, all starting from
the same single-entry point, followed by ‘decisions’ taken at each junction. The agents operate in junctions
similarly to binary operations, i.e. agents traversing across junctions; turning right or left, thus performing
computations, that is, adding a zero, or one number to the sum, respectively [11, 12]. The agents enter the
network through the entry funnel and continue to traverse the network towards the exits. During the
traversal progression, the agents come across three types of junctions: split junctions, pass junctions, and
join junctions. Depending on the SSP set, certain networks have also join junctions, where the solution to a
particular exit could be reached by more than one route. Split junctions are responsible for splitting the
agents across the left or right direction, preferably with equal chances. Agents turning left add +1 to the
computation, and agents turning right add zero to the computation. The split junctions are positioned

9

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

based on the subset-sum sets. In between the split junction corresponding to the subset-sum set, there is an
array of pass junctions. The function of the pass junctions is to allow the agents to continue in their original
movement without turning. These are the horizontal cross-sections where the motile agent must strictly
obey the traffic rule of continuing its trajectory. All split junctions contain join junctions, but not all join
junctions are active. The target sums with more than one solution will have a join junction at the
corresponding split junction that is active, and these networks are referred to as complexity class II
networks [12]. Conversely, the problems that can be solved with unique trajectories belong to complexity
class I. Representative SSP networks for complexity class II network route and complexity class I network
route are shown elsewhere [12]. During agent-driven computing, a host of other physical factors, like biased
turn preferences, interaction with the boundaries of the channels etc, can influence the binary decisions. For
instance, when bacteria explore a network, their ability to turn left or right is modulated by chemotactic
cues, nutrient foraging, flagellum/a architecture, and interactions with surrounding walls [31, 36, 84]. The
speed of exploration of the solution space largely depends on the agent velocity, their ability to multiply in
the network, and the booting time. Booting time is defined as the time taken for the minimum number of
agents required for computation to enter the network. The three modes of booting operable with
agent-based NB-C are detailed elsewhere [12]. It was also proposed [12] that computation could be
exponentially enhanced with the bacterial multiplication leading to the computing power that could
exponentially build-up in par with the increasing sample sizes. Thus, the use of self-dividing agents, such as
bacteria, for NP-complete problems could greatly reduce computing time compared with other
non-dividing agents. On the other hand, the small size of the motile agents translates to the necessity for the
amplification of their visualization, e.g. by tagging with a fluorescent dye [31, 80, 81].

Step 3: readout of the solutions (generation of the output for bacterial NB-C). To retrieve the solutions of
the NP-complete problem, the trajectories of the agents in the network must be recorded using an optical
interface, such as a microscope. The various limits of the optical readout interfaces on NB-C were reviewed
recently, in particular the various limits of the field of view [12]. A timestamped image recording, necessary
to obtain a reliable readout from agent-based computation [31, 80] comprises image acquisition, image
post-processing, and agent tracking. The existence of an SSP solution can be verified by checking if there are
any agents leaving through the exit representing the target number. In addition, since in the solution
generation step a series of images of the whole network was taken, the composition of the subsets that
represent SSP solutions can (optionally) be obtained by analyzing the traces of the agents. Image processing
tools, e.g. ImageJ Fiji [85, 86] and tracking plugins, e.g. Track Mate (semiautomatics) [85, 87], TrackJ
(manual) [87], will process the recorded frames of agent movement in the network. The decoded tracks and
the density maps encode the solutions to the respective SSP problem set presented to agent exploration. The
readout can be arrived at using three approaches.

(a) Density maps and backtracking. The sum of all the agent trajectories is projected as heat maps, i.e.
spatially-distributed frequencies of agent locations. Depending on the color scheme used, the most
taken paths (correct solutions) are brightly colored, or of the highest saturation, while the least taken
paths (incorrect solutions) are dark, or of minimum saturation (alternatively, the heat maps can be
interrogated for their numerical values). These density maps are used as a qualitative measure, a form
of quick parallel readout to arrive at the solutions for a particular set. Although quick, this
methodology only delivers the target sums, i.e. the existence of a solution to SSP. The combination of
the target sum and the multiple routes for the same exit for complexity class II type SSP can be derived
by backtracking and identifying the join junctions.

(b) Agent counting at the exits of the network. Another methodology is based on counting the number of
agents at the exits. This methodology, demonstrated for cytoskeletal filaments-driven NB-C [11],
translates into a bar chart with a distribution of agents with the highest relative count for correct exits,
versus the lowest relative counts for agents exiting, erroneously, the incorrect exits.

(c) Continuous tracking of the agents from the entry to the exit. Another methodology would be based on
single-particle, continuous tracking, either by manual, semiautomatic, or automatic methods, which
can be adapted to track the agent movement in the computation network, thus recording the visited
junctions encoding a particular solution.

In addition to these, already demonstrated methodologies, several, more elaborate approaches were
proposed, such as switchable tagging of biological agents ‘on the fly’, which would allow the computational
trajectories being stored in the agents as transient or permanent memory [12].

A comprehensive list of experimental procedures and the time taken to solve each stage of the
agent-based computation is represented in figure 3. Numerical calculations, such as the total number of
agents required to solve SSP of different sizes (cardinality), the network sizes comparison was reproduced,
with some modifications, as reported elsewhere [94]. The applied modifications to previous scaling

10

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

Figure 3. The model flow chart of agent-based NB-C and the associated stages. The figure here gives a ‘bird’s eye view’ of the
computational operations, such as exploring the network by bacteria; and pre-, and post-computational steps, such as network
design and fabrication, bacterial preparation and culture for experimentation, results readout, image analysis, together with the
associated required duration.

analysis stem from considering different input sets, i.e. unit, prime, Fibonacci, and exponential, as
introduced in section 3.

2.4. Electronic computing (E-C)

A review of the electronic computing is beyond the scope of this contribution. However, a balanced
comparison of DNA-C and NB-C projected capacity of solving NP-complete problems will benefit from
benchmarking it against the equivalent projected performance of electronic computers.

Electronic computers are essentially sequential machines (multi-core computers feature bounded
parallelism, at best), and therefore they are inherently challenged by the exponential increase of the number
of possible solutions with the size of the NP-complete problem. However, electronic computers do present
important advantages in tackling NP-complete problems. First and foremost, the speed of computation is
presently running in the billions of operations per second. One of the fastest commercial chips, AMD
Threadripper 3990X performs approximately 2.3 million MIPS (million instruction per second), at
4.35 GHz [88]. Second, after more than half a century of technology development following Moore’s law
[7, 89], electronic computer chips benefit from a deep, large, and fully functional ecosystem, including
manufacturing and performance standards, business networks, and last but not least, a large body of
elaborate mathematical algorithms and information processing protocols. Third, despite reports of a
slow-down in technology development, and of the “end of Moore’s law” [90, 91], the semiconductor
industry continues to find ways for dramatic improvements.

To ensure a correct comparison between the performance of DNA-C, NB-C, and the benchmark
electronic computers with regard to their performance in solving SSP, the latter must perform the
calculations by brute force, similarly with the former two massively parallel computation approaches. The
basic methodology to solve SSP by various generations of electronic computer chips was described
elsewhere [12]. Briefly, a computer program to solve SSP was developed in the C programming language to
enable very low-level memory access, efficient mapping to machine instructions, and flexibility. The SSP

algorithm was designed to explore all
∑

0�k�n

(
n
k

)
= 2n subsets each of which contains at most n

elements, and consequently the running time is of the order O (n · 2n). RAM and clock speed being the
major factors affecting CPU speed, the computing resources of Intel 286, Intel 386, Intel 486, Intel Pentium
Pro were replicated by simulating part of their computer hardware with virtual machines. However, these

11

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

calculations were dependent on the computing power of the chip, and consequently the fastest chip used
could solve SSP instances not larger than n = 50, for the prime input set. Fortunately, the computing time
was found to be in a near perfect relationship with the technical parameters of the chips, i.e. MIPS and
clock frequency, and this allowed the extrapolation of the computing time for solving SSP at higher
cardinalities and for more advanced computer chips (AMD Threadripper 3990X).

3. Scaling comparison of the DNA-C, NB-C, and E-C methods solving SSP

This section comprises a detailed scaling comparison of three qualitatively different methods for solving
SSP: the DNA-C of [13] described in section 2.2.2, the NB-C method of [11, 12] described in section 2.3,
and the classical E-C implementation of the (sequential) exhaustive search algorithm for SSP, described in
section 2.4. As comparison benchmarks, four different types of input sets are considered, drawn from the
following sequences of positive integers. The unit sequence is {ai}i�0, where ai = 1 for all i ∈ N, the prime
sequence {pi}i�0 consists of all the prime numbers in ascending order; the Fibonacci sequence is {fi}i�0,
where f0 = f1 = 1 and fi+2 = fi+1 + fi for all i ∈ N, and the two-exponential sequence is {expi}i�0 where
expi = 2i for all i ∈ N. The unit set of cardinality n is now defined as comprising the first n elements of the
unit sequence, and the prime set, the Fibonacci set, and the two-exponential set (or, simply, exponential set)
of cardinality n are similarly defined. For example, for cardinality n = 7, the unit set is {1, 1, 1, 1, 1, 1, 1},
the prime set is {2, 3, 5, 7, 11, 13, 17}, the Fibonacci set is {1, 1, 2, 3, 5, 8, 13}, and the two-exponential set is
{1, 2, 4, 8, 16, 32, 64}. Using these sets as inputs for instances of SSP, the DNA-C and NB-C methods for
solving the SSP problem are now compared, at different cardinalities, as follows. Section 3.1 discusses the
pre-computing step for both methods: the synthesis and length of DNA strands utilized in the case of
DNA-C method, and the network fabrication details in the case of the NB-C method. Section 3.2 compares
the physical volume of the computation for each method, while section 3.3 compares the energy used by
each method in the computation step, and section 3.4 compares the energy needed for computation, for all
computational approaches considered.

3.1. Pre-computing

Before considering the ‘core’ operational parameters of the three computational procedures considered
here, it must be observed that—following decades of development and standardization—the classical
electronic computers consist of ‘ready-made hardware’, that is, no substantial pre-computing procedures
need to be performed. Furthermore, in most instances electronic computers utilize pre-loaded algorithms,
possibly including those solving special cases of NP-complete problems.

In contrast, non-classical computing methods such as DNA-C and NB-C are characterized, due to their
considerably less progressed development stage, by a lack of standardization, and they usually offer ad-hoc,
problem-dependent, solutions (possibly involving the fabrication of new ‘hardware’ for each problem).
Consequently, while this situation is expected to improve with further development of non-classical
computing, a thorough scaling comparison and analysis cannot ignore the necessary pre-computing step for
the DNA-C and NB-C methods.

In the case of DNA-C, the pre-computing step (described in section 2.2) comprises the synthesis of the
DNA strands representing the computing region of the input set S, followed by their insertion into
plasmids, and by the amplification of the plasmids containing the computing region of S. As detailed in
section 2.2, for an SSP instance of size n, with input set S = {s1, s2, . . . , sn}, the length of the DNA strand
representing the computing region of S is LS

DNA(n). Figure 4 illustrates the lengths of computing regions of
the unit, prime, Fibonacci, and two-exponential input sets of various cardinalities, if the length of all
restriction enzyme recognition sites is k = 6, see [13]. Using these calculations, and taking 10 kbp as the
maximum length of synthesizable DNA strands (see section 2.2), it follows that the largest input sets that
can be encoded using this DNA-C procedure and current technology are input sets of cardinality n = 1665
for unit sets, n = 30 for prime sets, n = 15 for Fibonacci sets, and n = 9 for exponential sets.

The possible rate limiting factors for DNA-C include: (i) despite the high-fidelity DNA-polymerase
based amplification, random errors still occur [92, 93]; (ii) DNA fragment hybridization mismatches
[94, 95]; (iii) metastable DNA hybrid structures, e.g. hairpin loops [96–98]. However, these errors can be
mitigated with optimized protocols, e.g. variation of temperature, use of specific enzymes relaxing the
hairpin loops and metastable structures [99]. Additionally, the use of new generation sequencing can help
the quantification of errors and provide feedback loop for protocol optimization. Consequently, considering
these achievable optimization paths, the scaling estimations regarding DNA-C procedure considered only
the optimal properties of the DNA strands.

12

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

Figure 4. Logarithmic scale graph illustrating the length of the DNA strand that encodes the computing region of the input set
in the DNA-C procedure [13], for the unit, prime, Fibonacci, and two-exponential input sets of different cardinalities, from
n = 1 to n = 100. The length of the computing region of the input set grows exponentially (linear growth, at logarithmic scale)
for two-exponential and Fibonacci input sets, and it grows linearly for unit and prime input sets (quasi-constant growth, at
logarithmic scale).

Besides the length of the computing region of the input set, which determines an upper limit on the size
of SSP instance solvable by this DNA-C, another limitation on the pre-computing step is the number of
restriction enzymes available. This is because encoding of an input set of cardinality n requires (n + 2)
restriction enzymes (one for each number in the input set, and one for each end of the computing region of
S). Each enzyme must have a distinct recognition site, and all restriction sites must be of the same length k.
If k = 6, see [13], the number of known enzymes with different recognition sites of this length is 47, see
[100], and this becomes an additional upper limit for the maximum size of SSP instance solvable by this
DNA-C procedure.

In the case of the NB-C method, the scaling analysis used the bacteria-operated version, because it offers
more opportunities for insight, especially due to the possibility of agent multiplication. In general, NB-C
also needs two separate pre-computing modules: (i) micro-, or nano-fabrication of the computational
network, using photo- or electron-beam lithography, followed by semiconductor manufacturing proper for
the computational device for cytoskeletal filaments-driven NB-C; or for the master mold for
microorganisms-driven NB-C, followed in the latter case by PDMS-based soft lithography [11, 101]; and
(ii) genetic engineering of the bacterial strain with fluorescence expressing plasmids [31, 80]. The split and
pass junctions have an average diagonal length of 106.3 μm for a bacterium agent of an average size of
0.5 μm × 1.0 μm. The diagonal length may vary depending on the bacterial or the motile agents used for
computation. The fabrication time for the network is computed based on the total number of junctions in
each input sets. A nanometer precise fabrication is necessary for finer cytoskeletal filaments [11, 79], but for
e-beam lithography, a higher resolution, coupled with larger channel dimensions, results in a longer
fabrication time/unit cell. Another limiting factor is the largest wafer size available to accommodate the
computational network, with the most used wafer diameter being 8 inch (12-inch wafer is presently the
maximum size). Figure 5 presents the number of unit cells required for a specific cardinality, with the
fabrication time being proportional to this number. As for NB-C analysis, the pre-computation processes,
e.g. network fabrication, mass production of bacteria, are not included in the assessment of the computing
time needed to solve SSP for various cardinalities. The preparation of bacteria for NB-C proceeds once per
computation, with a duration allowing several of these preliminary procedures within 12 h. Because the

13

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

Figure 5. Logarithmic scale graph illustrating the total number of junctions used in the network for the NB-C [12], for the unit,
prime, Fibonacci, and two-exponential input sets of different cardinalities, from n = 1 to n = 50. The total number of junctions
grows exponentially for two-exponential and Fibonacci input sets, and it grows linearly for unit and prime input sets.

NB-C network encodes a brute force mathematical algorithm for solving SSP, once the key parameters of
the geometry are acquired, e.g. number, type, position of the nodes, length and widths of the channels,
templates for post-processing rectifiers, and ‘ghost lanes’ [81], the actual design of the planar layout of the
biological agents-driven computer can progress entirely automatically, e.g. using lithography
design software.

To further clarify the design procedure, in the SSP network used, a set of a problem with total sum size ς

is encoded in a modular system, i.e. a lattice built from two isomorphic unit cells. One unit cell type
contains a pass junction, where agent traffic lines cross without interaction, the other unit cell type has
additional split junctions, allowing a change of traffic direction [11, 12, 81]. The elements si of the set are
represented by one split-junctions-containing unit cell followed by (si − 1) pass junction-only unit cells. All
elements si of the set represented this way are sequentially ordered to obtain a row of ς unit cells. This row
forms the basis of the network, which is copied (ς − 1) times and stacked in the direction perpendicular to
the row. The concept of this design is presented elsewhere [81]. It should be noted that adding an element
in the set results in diagonal upward traffic, whereas skipping an element results in horizontal traffic.
Consequently, only a triangular part of the rectangular lattice, starting in the bottom-left corner, is needed.
This translation of a set into a triangular network can be fully automated; the time needed scales with ς2.
Finally, it should be noted that in case the split lanes in the split junctions unit cell can be optionally
blocked, one type of unit cell can be employed in the whole lattice, allowing all sets of total size ς to be
calculated by the same network [11, 12]. This would considerably reduce the design and fabrication costs
for this type of calculation networks.

To summarize, the limitations on the pre-computing step of this DNA-C are the length of synthesizable
DNA strands and the number of available restriction enzymes, while the limitations on the pre-computing
step of the NB-C method are the fabrication resolution and the size of the silicon wafer to be fabricated.
Thus, the precomputing step limits the size of an SSP instance that can be solved by this DNA-C procedure
to at most n = 45 for unit sets, n = 30 for prime sets, n = 15 for Fibonacci sets, and n = 9 for exponential
sets. Similarly, for the NB-C method used in this comparison, which uses bacteria as the agents and if
e-beam fabrication is used, the pre-computing step limits the size of an SSP instance that can be solved by
the NB-C method to at most n = 2000 for unit sets, n = 37 for prime sets, n = 16 for Fibonacci sets, and
n = 10 for exponential sets.

14

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

While serious challenges remain, none relates to a current technological limitation. Even with the
present, state-of-the-art technologies, there are several ways to improve performance to scale up the
computation, at a cost, as detailed in section 4. However, a fair comparison of the E-C computing time with
that of alternative computing approaches, would omit the time cost for pre-computing and readout
procedures. For this scaling analysis, only the information from experimentally demonstrated procedures
for solving SSP, as reported for DNA-C [13] and for NB-C [11, 12] was used, as well as the performance
specifications of typical electronic computers for E-C.

3.2. Comparison of the volume required by computation
In this section, the physical volume required by the DNA-C, NB-C and E-C methods is compared for the
computation of a solution to an SSP instance: the volume of the solution comprising DNA molecules for
DNA-C, the volumes of the network channels and the biological agents (bacteria) needed for NB-C
method, and the volume of the computer for E-C.

For the DNA-C method, the volume of the computation is proportional to the maximum number of
DNA molecules, which is reached during the pre-computing step and remains constant afterwards. Indeed,
this DNA-C procedure generates all 2n potential solutions to an SSP instance of input size n, by selectively
removing number representing ‘stations’ from the computing region of the input set. For this volume
calculation, it was assumed that each SSP-solution-encoding DNA molecule is present in the same number
of copies, and that wmin denotes the weight of the smallest amount of DNA detectable on a gel
(with current technology, wmin is 1 nanogram [102, 103]). With these assumptions, the maximum number
of molecules that are required during a DNA-C computation can now be computed, based on the
maximum number of the shortest SSP-solution-encoding DNA molecules that have a total weight of wmin.

To calculate the number of base pairs of a partially double-stranded DNA molecule with sticky-ends,
each base in a sticky-end was assumed to count as 1/2 base pair. With this assumption, the length of the
shortest computing region of a subset (the empty set) at the result readout step is L∅

DNA (n) − k (bp). To
calculate how many of these shortest molecules fit into wmin, the weight of linear double-stranded DNA
molecules of length x (bp) is

Wds (x) = 617.96 (x − 2) + 2 · (617.96 + 18.02) = (617.96x + 36.04) g mol−1,

where the average molecular weight of one internal base pair is 617.96 g mol−1, and the average molecular
weight of the two bases at an extremity is (617.96 + 18.02) g mol−1 (this includes the weight of the
additional −OH and −H groups at the ends), see [104]. If the DNA double strands are circular, then their
weight is Wc(x) = 617.96x g mol−1.

Given that the number of all potential solutions to a given SSP instance of size n is 2n, it follows that the
maximum number Nmax

DNA (n) of linear DNA molecules encoding the computing region of the input set is:

Nmax
DNA (n) = 2n × wmin ×

[
Wds

(
L∅

DNA (n) − k
)]−1

(mol).

It follows that the maximum volume required during this DNA-C procedure equals the total number
Nmax

DNA (n) of plasmids including computing regions of the input set S, multiplied by the weight of one such
‘fully-stuffed’ plasmid, and divided by the density of DNA in solution:

Vmax
DNA (n) = Nmax

DNA (n) × Wc(b + LS
DNA(n)) × d−1 (ml),

where d is the density of the DNA solution in g ml−1, and b is the number of base pairs in the part of the
base plasmid that is used. Taking b = 2 174 bp, k = 6 bp, wmin = 10−9 g, and d = 10−3 g ml−1 [103], the
estimated volumes of DNA molecules in the DNA-C for SSP with unit, prime, Fibonacci and exponential
input sets of different sizes are shown in figure 6. If 5l is taken as the maximum size of container that can be
handled in a lab setting, the maximum size of an SSP instance that is solvable with this DNA-C procedure is
n = 28 for unit sets, n = 26 for prime sets, n = 21 for Fibonacci sets, and n = 17 for exponential sets.

For NB-C, in the bacterial-driven version, the volume of the computational agents required for solving a
particular cardinality of SSP is dependent on the minimum number of bacteria needed for solving a specific
cardinality. The minimum number of agents (bacteria) required to solve an SSP instance of cardinality n
can be calculated using the Euler coupon collector relation [105], with the Euler–Mascheroni constant
γ ≈ 0.577 21, as:

MNB−C (n) = 2 ·
(

2n · ln (2n) + γ · 2n +
1

2

)
.

A more conservative estimation will use a multiplier of the number provided by Euler’s relationship for
the minimum number of agents to explore the SSP network for a given cardinality. Furthermore, the higher

15

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

Figure 6. The estimated volumes of biological agents (solution of DNA molecules, respectively bacteria) used by the DNA-C and
NB-C procedures, and network channel volumes used by NB-C to solve an instance of SSP with unit, prime, Fibonacci, and
two-exponential input sets of different cardinalities, from n = 1 to n = 50 (logarithmic scale). Note that the agent volume in
NB-C is equal for all various SSP instances of the same cardinality.

the error rates in junctions, the larger the number of agents needed to solve SSP. According to experimental
reports of the bacterial errors, i.e. 0.5% at the pass junctions of SSP networks, a doubling of the value
provided by the Euler relationship appears as conservatively justified [12, 105, 106]. The graph in figure 6
presents the minimum volume of the required bacteria. A similar calculation can be made for cytoskeletal
filaments, with leading to smaller volume of the computational agents. At the other end of the spectrum,
similar calculations can be performed for larger motile species, e.g. from the Euglena genus, leading to
considerably larger volume of agents. The volume of agents required during the NB-C approach is
VNB−C (n) = MNB−C(n) × d−1 (ml); where d is the density of the agents in solution. Assuming E. coli as the
computational agent, with a density of 2 × 109 cells/ml of culture solution [107], the estimated minimum
volume of agents required by the NB-C approach is presented in figure 6. This value is equal for solving SSP
instances with unit, prime, Fibonacci, and exponential input sets of the same cardinality.

For NB-C however, apart from the total (bacterial) agent volume needed, there is the need to also
consider the volume of the network channels. This volume is calculated, using the track lengths in all
junction unit cells of a network design, multiplied by the track width and height (for E. coli networks being
2 μm and 4 μm respectively). For the compact complexity class II networks, with unit, prime, and
Fibonacci input sets, the network channel volume is moderately expanding with cardinality (figure 6), as
many channels (and exits) will be visited multiple times. However, for the (unary coded) two-exponential
network, (complexity class I, in which sets can only be reached by one route), the network volume will
rapidly increase with cardinality.

For electronic computers, it can be arguably assumed that at the limit, the computing agents are the
electrons. Aside of their very small size, given their sequential processing of electronic computers, there is a
very small need for ‘agents’, thus making the discussion regarding the volume of agents superfluous. At the
limit, the necessary volume for E-C can be the volume of a computer chip, which is by any account many
orders of magnitude smaller than the volumes required for either DNA-C, or for NB-C.

To summarize, the physical volumes required by the DNA-C method, and the (bacterial) agent and
network volumes required by the NB-C for solving an SSP instance grow exponentially with the size of the
input set. In addition, the volume required by this DNA-C procedure also grows proportionally to the sum
of the numbers in the input set. Compared with the NB-C method, the DNA-C method requires orders of
magnitudes larger volumes even for unit input sets. For example, the NB-C method to solve an SSP instance

16

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

with an input set of cardinality of n = 30 requires approximately 1.07 ml of bacteria, while for the same
cardinality the DNA-C method requires 14.7 l for unit sets, 68.8 l for the prime set, 7.54 × 104l for the
Fibonacci set, and 7.44 × 107l for the exponential set.

3.3. Comparison of the computing time
Perhaps the most important performance criterion for comparing various computing methods for solving
NP-complete problems is the computing time required to solve a benchmark problem. Indeed, one of the
goals of the research into alternative computing methods was to exploit their massively parallelism to
shorten the computing time they require to solve NP-complete problems.

The computing time of DNA-C and NB-C procedures comprises three parts: the time required for
pre-computing, the time required by the actual computation step (generation of potential solutions), and
the time needed to read out the results. The comparison of the computing time in this section refers only to
the time required during the actual computation step, called thereafter run time, and excludes the time
spent in the pre-computing step (creation the plasmids in the case of DNA-C, and fabrication the network
and culturing the bacteria in the case of NB-C). Similarly, the time spent for read-out analysis was not
included either, because (i) the process is simple if only the existence of an SSP solution is considered, and
(ii) the process of finding the actual solutions could in principle be parallelized and thus achievable with
present technologies and depending on cost considerations only.

For the solution generation step of the DNA-C approach, mentioned in section 2.2.2, the DNA-C
procedure for solving an SSP instance of size n comprises n split-and-merge steps. Each such step starts by
the digestion of half of the plasmid population by restriction enzymes, to cut out a specific
number-encoding ‘station’. This is followed by purification by agarose gel electrophoresis, to separate and
remove the number-encoding ‘station’ short DNA strands. This is followed, in turn, by the re-ligation of the
longer linear strands, which include the computing region of some subset of the input set, back into circular
plasmids. Thus, if te is the time required for one restriction digestion, tp the time required for one plasmid
purification, and tl the time required for one ligation, then the estimated run time for this DNA-C
procedure solving a size n instance of SSP is:

Tmax
DNA (n) =

(
te + tp + tl

)
× n (sec).

Taking te = 0.5 h (1800 s), tp = 1.5 h (5400 s), tl = 0.25 h (900 s), see [103], this results in a run time
complexity of Tmax

DNA (n) = (8100 × n) seconds, as illustrated in figure 7, for various values of n.
The total NB-C run time for solving SSP, as a function of cardinality of the input set, depends on many

parameters, but can be modeled as a mixture of two extreme run modes between which the ‘real world’
operation takes place:

(a) In the combinatorial run mode [12], the agents enter the network at the starting point with a fixed
booting frequency (determined by the effective agent length in a queue and the average agent speed)
and proceed on their routes to the exits. The total run time is the time needed to boot all 2n agents
(times the coupon collector’s correction for stochastic multiple identical variable combinations [105]),
plus the time needed for a single agent to run from start to exit. For low cardinality problems the single
agent run time is important, for high cardinality problems, however, this value is eclipsed by the
booting time needed for all agents to enter the network.

(b) In the optimum multiplication run mode [12], a single agent enters at the starting point, and at every
split junction agent multiplication occurs (cell division). In case there is only one route to every legal
SSP exit (complexity class I network), the total run time equals the longest one-agent run time from
start to exit. This would be the case for the strongly expanding exponential set. More compact
networks, however, show multiple routes to the same exits (complexity class II network). As a
consequence, there will be a rise in traffic density further down the network; and this may lead to traffic
jams. In an ‘optimistic’ scenario, the agents simply wait until there is enough space available for them
to proceed further. The total run time is the run time of one agent plus the time needed to ‘de-boot’
the agents that need to leave the middle exits of the network, which are more visited than those on the
edges, with a fixed ‘de-booting’ frequency (determined by the effective agent length and average agent
speed). Again, at low cardinalities, the single agent run time is important, but for high cardinality
problems, this value is eclipsed by the ‘de-booting’ time needed for the agents to leave the exits in the
middle part of the network.

In the ‘real world’, it is very improbable that cell division will occur at every split junction, which could
be also slowing down at higher traffic density. Anyhow, the run time versus cardinality plot for a given
network will be in between the curves of the scenarios (a) and (b) described above, as also shown in
figure 7.

17

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

Figure 7. The estimated run time required by DNA-C, NB-C, and E-C procedures for solving an instance of SSP with inputs set
of different cardinalities, from n = 1 to n = 100 (logarithmic scale). The real run time of NB-C will be in between the curves
depicting scenario (i) (combinatorial run mode) and scenario (ii) (multiplication run mode). The run time of the DNA-C grows
linearly with the cardinality of the input set, while the run time of the NB-C and the E-C grows exponentially.

To summarize, the run time for solving SSP by this DNA-C procedure Tmax
DNA (n), is linear with the

problem size n, in contrast with the exponential relationships for the run time for both the NB-C and the
E-C methods. In addition, the run time required by the NB-C method also grows linearly with the sum of
the numbers in the input set. Overall, the linear run time of this DNA-C procedure for SSP is its most
competitive feature compared with both NB-C and E-C.

3.4. Comparison of energy required for computation
Another key performance criterion, especially for high performance computing, is the energy consumption
for computation. The following analysis does not take into consideration the energy consumption for
pre-computing procedures or readout, for all the three computing methods considered.

In the computation step of this DNA-C procedure, two operations are employed: cutting (digestion) by
restriction enzymes, and pasting (ligation) by ligase enzymes, as described in section 2.2. The restriction
enzyme digestion is inexpensive from the point of view of energy consumption, as no external energy is
needed [108]. However, ligation is energy-intensive, as ligases consume one ATP (6.3 kcal mol−1 = 26
359.2 J mol−1 of energy, [109]) per backbone nick-sealing event. Ligating two DNA double strands together
entails two such nick-sealing events, one for each single strand. This DNA-C procedure comprises n
split-and-merge substeps, and each substep entails re-ligating half of the plasmids (namely those from
which one number-representing station was cut out). Hence, the energy consumption of the computation
step of the DNA-C for an SSP instance of size n is:

EDNA (n) = n ×
(

1

2
Nmax

DNA(n)

)
× (2 × 26 359.2) (Joules).

The energy cost for the computation stage of this DNA-C procedure grows exponentially with the input
size n, due to exponential growth of the number of strands Nmax

DNA (n), as illustrated in figure 8. While the
total energy cost grows exponentially with the input size n, this DNA-C procedure is very energy efficient if
considering the average electrical power in Watts (energy divided by the run time, analyzed in section 3.3).
Indeed, even though the power also grows exponentially with n, for an input set size as large as n = 50 the
energy needed is only about 20 W, similar to the energy consumption of an LED light bulb.

18

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

Figure 8. The energy required in the computation step of DNA-C, NB-C, and E-C for solving an instance of SSP with unit,
prime, Fibonacci, and two-exponential input sets of different cardinalities, from n = 1 to n = 100 (logarithmic scale). The energy
cost of the DNA-C and the E-C is independent on the type of input set and depends only on its cardinality, while the energy cost
of the NB-C depends on the cardinality, the sum of the numbers of the input set, and the type of agent (here E. coli or actin
myosin).

For the NB-C, the energy required for computation for a given cardinality of SSP, will be determined by
the number of agents needed to finish the calculation (including the coupon collector’s correction [105]).
As the locomotion energy needed for passing one node is known [12], the total energy needed to perform
the calculation for the combinatorial run mode (no cell division, scenario (a) in section 3.3), can be easily
estimated (figure 8). In the multiplication run mode (with cell division, scenario (b) in section 3.3), on the
one hand, the energy required for computation is over-estimated, because many agents originate
somewhere in the network and need to run only part of the total track. On the other hand, the energy
needed for agent multiplication (cell division) which is likely to cost much more than just running through
nodes, was also discounted.

Finally, the energy required by E-C for solving SSP can be easily calculated as the product between the
number of operations required by the E-C for solving a particular SSP instance and the energy cost per
operation, provided by chip specifications.

To summarize, the energy cost of the computation step for all of DNA-C, NB-C, and E-C grows
exponentially with the size of the input set. Moreover, the energy cost in the computation step of the NB-C
method also increases linearly with the sum of the numbers in the input set. Overall, the NB-C appears to
be more energy-efficient than DNA-C in some cases, i.e. unit, and prime input sets, but in other cases, i.e.
Fibonacci and exponential input sets, NB-C is more energy consuming than DNA-C, increasingly so with
the increase of the input set cardinality, and regardless of the agents used. However, despite the energy cost
being high for NB-C in some cases, bacteria can self-produce the ATP from cheaply available nutrient
sources, e.g. beef extract, yeast extract, tryptone, while for DNA-C the ATP must be externally supplied as a
purified additive. Therefore, and depending on specific circumstances, bacterial-based NB-C appears to be
more self-sustainable [110], despite its sometimes-high energy cost compared to DNA-C. Finally, E-C
appears to be an order of magnitude less energy-efficient than both DNA-C and NB-C.

4. Perspectives

The comparison of the DNA-C, NB-C, and E-C computing paradigms, aimed to solve NP-complete
problems, each at a very different stages of its development, is based on the current state of the art of

19

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

enabling technologies. All three approaches present both benefits and drawbacks, when judged against three
key performance criteria: volume needed for computation, computing time, and energy needed for
computation. A tentative projection of possible future developments, based solely on the present
state-of-the-art, is as follows.

(a) How to address the challenge of a solution space that grows exponentially (or worse) with the size of the
problem? All computing approaches analyzed, as well as any other proposed or to be proposed,
attempting to solve an NP-complete problem need a computing resource that also grows exponentially
with the size of the problem. Therefore, any computing approach attempting to solve an NP-complete
problem, must clearly identify, better in the earliest development stages, what is the upper tolerable
limit of the critical computational resource that can be plentifully provided, such as DNA molecules, or
the area of NB-C network. Alternatively, the computational approach can use an infinite computational
resource, such as time, or which can grow exponentially in time, such as self-dividing bacteria, and
consequently decide what is the tolerable limit of this infinite of exponentially growing resource. In
both cases, these limits on computational resources will translate in the limit of the size of the
theoretically solvable NP-complete problem.

(b) Electronic computing. Despite its advanced age, Moore’s law appears to find ways to stay relevant, as
witnessed by the continuous, so far, improvement of the performance of individual electronic
semiconductor devices, as well as by advances in parallelization of computation. The parallelization can
be achieved by multi-core computers, with presently the fastest, i.e. Fugaku, having 7.63 million cores,
and the largest, i.e. Sunway TaihuLight, having 10.65 million cores. Moreover, the seriality of E-C
results in very small computing volume. This being said, for electronic computers the level of
parallelism is bounded by the number of available processors, and this inherently limits the size of the
problems that can be solved by a particular computer. Perhaps an even more severe limitation, when
compared with alternative computing approaches, is the high energy consumption per operation.

(c) DNA computing. Although the field originally started with the demonstration of a computing
application by Leonard Adleman in 1994, it has shifted its goal away from being a competitor to
electronic computers, toward several other promising research and application directions. These
include exciting recent developments in ultra-compact DNA-based data storage technologies
[46, 111–114], DNA nanotechnology applications [115], shape-programmable 2D and 3D DNA
self-assembly, e.g. 3D self-assembly of DNA bricks [116, 117], GDa scale DNA assemblies [118]), DNA
origami (e.g. DNA origami polyhedral meshes [119], the world’s smallest Mona Lisa image [120],
DNA/silica hybrid nanomaterials templated with DNA origami [121]), molecular algorithms using
reprogrammable DNA self-assembly [59], DNA nanoscale robots, e.g. DNA nanobots that carry gold
particles [122], DNA robots that sort cargo as they walk [123], (see [96] for a review), DNA
steganography with SNPs [124], etc.

(d) Network biocomputing. This more recent and qualitatively different biocomputation approach has
advantages, as well as limitations that could potentially be mitigated. First, the encoding of the brute
force algorithm in the NB-C network increases the efficiency of the exploration of the solution space. In
a sense, NB-C shares the burden of the exponential increase of the solution space with the size of the
problem between two, not one, computational resources: the number of computational agents, and the
area, and thus the volume of the computer. Second, the functionality of the current NB-C
implementation can be improved by tagging the agents ‘on the fly’ whenever they pass spatially
addressable junctions. This would open the possibility of reading the history of logical junctions being
visited by agents only at their exit, thus making the optical readout throughout the area of the network
obsolete, and therefore making the limitations of the field of view of the optical readout a non-issue.
Presently tagging technologies exist, e.g. light-controlled on-off fluorescence, which can be realistically
implemented in either cytoskeletal filaments, or microorganisms. Third, NB-C can have ‘smarter’,
albeit possibly larger, agents, which can be genetically programmed to perform slightly more complex
functions. If these more complex agents are larger, then the area of the computer will inherently
increase, linearly, but if the ‘tagging on the fly’ technology is developed, and the agents are read only at
the exit, the design can progress toward three-dimensional networks, with much more compact
footprint, and thus alleviate the need for high resolution lithography, and importantly make the
volume of the ‘computer’ more tolerable. Forth, designs solving other-than-SSP can be developed, e.g.
traveling salesman problem, Steiner tree problem, maximal Clique problem, etc. Finally, the
‘one-instance/one-network’ design issue could be reasonably solved by fabricating templated networks
with MEMS-programmable junctions.

(e) Hybrid computing approaches? The present analysis showed that none of the computing approaches
surveyed are superior to all key performance parameters: E-C presents a very small computing volume

20

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

(due to its seriality), DNA-C has a linear computing time (due to its massive parallelism), and NB-C
has a mixture of lower computing volume than DNA-C, but much higher than E-C (due to its
encoding of the search algorithm in its networks). While improvements could change the relative ratio
of these benefits/drawbacks, it is possible that synergizing these computing paradigms could be the
ultimate answer to solving NP-complete problems of reasonable size. Certainly, interfacing such diverse
technologies would not be trivial, but there are examples of this synergetic ‘technological ecosystem’:
nuclear plants transform nuclear energy in thermal steam energy, which is then transformed in
mechanical energy of turbines, which in turn translates in electrical energy. For instance, aside of
calculations, NB-C systems can produce ATP, which can be then funneled to DNA-C (or
cytoskeletal-driven NB-C). More importantly, solving NP-complete problems can be ‘jump-started’ by
fast E-C, then the preliminary results can be passed to NB-C, especially with agent division, and finally
the large amount of readout data can be stored using the large capacity of DNA memory. That would
be as good as it gets.

Acknowledgments

This study was supported by grants from the Defense Advanced Research Projects Agency (DARPA), Grant
No. HR0011-16-2-0028, the European Union Horizon2020 FET program Bio4Comp, GA No. 732482, the
European Union FP7 program ABACUS, GA No. 613044 to DVN; grants from the Canadian Natural
Sciences and Engineering Research Council (NSERC), RGPIN-2016-05019 to DVN, and R2824A01 to LK;
and from the Social Sciences and Humanities Research Council of Canada (SSHRC), Grant
NFRFE-2019-00129 to DVN and LK.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Author contributions

Conceptualization: A Sudalaiyadum Perumal, Z Wang, G Ippoliti, F van Delft, L Kari, D V Nicolau.
Data curation: A Sudalaiyadum Perumal, Z Wang, G Ippoliti, F van Delft, L Kari, D V Nicolau.
Formal analysis: A Sudalaiyadum Perumal, Z Wang, G Ippoliti, F van Delft, L Kari, D V Nicolau.
Funding acquisition: L Kari, D V Nicolau.
Investigation: A Sudalaiyadum Perumal, Z Wang, G Ippoliti, F van Delft, L Kari, D V Nicolau.
Methodology: A Sudalaiyadum Perumal, Z Wang, G Ippoliti, F van Delft, L Kari, D V Nicolau.
Project administration: L Kari, D V Nicolau.
Resources: L Kari, D V Nicolau.
Supervision: L Kari, D V Nicolau.
Validation: A Sudalaiyadum Perumal, Z Wang, G Ippoliti, F van Delft, L Kari, D V Nicolau.
Visualization: A Sudalaiyadum Perumal, Z Wang.
Writing—original draft: A Sudalaiyadum Perumal, Z Wang.
Writing—review & editing: A Sudalaiyadum Perumal, Z Wang, G Ippoliti, F van Delft, L Kari, D V

Nicolau.

ORCID iDs

Ayyappasamy Sudalaiyadum Perumal https://orcid.org/0000-0002-1360-9152
Falco C M J M van Delft https://orcid.org/0000-0002-3234-2211
Dan V Nicolau https://orcid.org/0000-0002-9956-0600

References

[1] Pierce N A and Winfree E 2002 Protein design is NP-hard Protein Eng. Des. Select. 15 779–82
[2] Fraenkel A 1993 Complexity of protein folding Bull. Math. Biol. 55 1199–210
[3] Brandes U, Delling D, Gaertler M, Gorke R, Hoefer M, Nikoloski Z and Wagner D 2008 On modularity clustering IEEE Trans.

Knowl. Data Eng. 20 172–88
[4] Gi-Joon Nam G-J, Sakallah K A and Rutenbar R A 2002 A new FPGA detailed routing approach via search-based Boolean

satisfiability IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 21 674–84

21

https://orcid.org/0000-0002-1360-9152
https://orcid.org/0000-0002-1360-9152
https://orcid.org/0000-0002-3234-2211
https://orcid.org/0000-0002-3234-2211
https://orcid.org/0000-0002-9956-0600
https://orcid.org/0000-0002-9956-0600
https://doi.org/10.1093/protein/15.10.779
https://doi.org/10.1093/protein/15.10.779
https://doi.org/10.1093/protein/15.10.779
https://doi.org/10.1093/protein/15.10.779
https://doi.org/10.1007/BF02460704
https://doi.org/10.1007/BF02460704
https://doi.org/10.1007/BF02460704
https://doi.org/10.1007/BF02460704
https://doi.org/10.1109/tkde.2007.190689
https://doi.org/10.1109/tkde.2007.190689
https://doi.org/10.1109/tkde.2007.190689
https://doi.org/10.1109/tkde.2007.190689
https://doi.org/10.1109/tcad.2002.1004311
https://doi.org/10.1109/tcad.2002.1004311
https://doi.org/10.1109/tcad.2002.1004311
https://doi.org/10.1109/tcad.2002.1004311

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

[5] Hopfield J J and Tank D W 1985 Neural computation of decisions in optimization problems Biol. Cybern. 52 141–52
[6] Massacci F 1996 Contextual reasoning is NP-complete Proc. 13th National Conf. Artificial intelligence (AAAI 96) ed B Clancey

and D Welds (Portland, Oregon 4–8 August 1996) (Menlo Park, California: AAAI Press) pp 621–6
[7] Moore G E 1965 Cramming more components onto integrated circuits Electronics 38 114–7
[8] Kish L B 2004 Moore’s law and the energy requirement of computing versus performance IEE Proc., Circuits Devices Syst. 151

190–4
[9] Adleman L M 1994 Molecular computation of solutions to combinatorial problems Science 266 1021–4

[10] Adleman L M 1998 Computing with DNA Sci. Am. 279 54–61
[11] Nicolau D V Jr et al 2016 Parallel computation with molecular-motor-propelled agents in nanofabricated networks Proc. Natl

Acad. Sci. USA 113 2591–6
[12] van Delft F C M J M, Ipolitti G, Nicolau D V Jr, Sudalaiyadum Perumal A, Kašpar O, Kheireddine S, Wachsmann-Hogiu S and

Nicolau D V 2018 Something has to give: scaling combinatorial computing by biological agents exploring physical networks
encoding NP-complete problems Interface Focus. 8 20180034

[13] Henkel C V, Bäck T, Kok J N, Rozenberg G and Spaink H P 2007 DNA computing of solutions to knapsack problems Biosystems
88 156–62

[14] Cormen T H, Leiserson C E, Rivest R L and Stein C 2009 Introduction to Algorithms (Cambridge, MA: MIT Press)
[15] Sipser M 2012 Introduction to the Theory of Computation 3rd edn (Canada: Cengage Learning)
[16] Head T, Rozenberg G, Bladergroen R S, Breek C K D, Lommerse P H M and Spaink H P 2000 Computing with DNA by

operating on plasmids Biosystems 57 87–93
[17] Henkel C V, Bladergroen R S, Balog C I A, Deelder A M, Head T, Rozenberg G and Spaink H P 2005 Protein output for DNA

computing Nat. Comput. 4 1–10
[18] Aoi Y, Yoshinobu T, Tanizawa K, Kinoshita K and Iwasaki H 1998 Solution of the knapsack problem by deoxyribonucleic acid

computing Japan. J. Appl. Phys. 37 5839–41
[19] Stoschek E, Sturm M and Hinze T 2001 DNA-computing-ein funktionales modell im laborpraktischen experiment Inf. Forsch.

Entw. 16 35–52
[20] Braich R S, Johnson C, Rothemund P W K, Hwang D, Chelyapov N and Adleman L M 2001 Solution of a satisfiability problem

on a gel-based DNA computer Proc. 6th Int. Workshop on DNA-Based Computers (DNA 2000), DNA Computing vol 2054 ed A
Condon and G Rozenberg (Leiden, The Netherlands 13–17 June 2000) (Berlin: Springer) pp 27–42

[21] Braich R S, Chelyapov N, Johnson C, Rothemund P W K and Adleman L 2002 Solution of a 20-variable 3-SAT problem on a
DNA computer Science 296 499–502

[22] Liu Q, Wang L, Frutos A G, Condon A E, Corn R M and Smith L M 2000 DNA computing on surfaces Nature 403 175–9
[23] Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, Yokomori T and Hagiya M 2000 Molecular computation by DNA

hairpin formation Science 288 1223–6
[24] Takenaka Y and Hashimoto A 2002 DNA computing by competitive hybridization for maximum satisfiability problem Proc.

2002 Congress on Evolutionary Computation (CEC 02) (Honolulu, Hawaii 12–17 May 2002) (Piscataway, NJ: IEEE) pp 472–6
[25] Wang X, Bao Z, Hu J, Wang S and Zhan A 2008 Solving the SAT problem using a DNA computing algorithm based on ligase

chain reaction Biosystems 91 117–25
[26] Ouyang Q, Kaplan P D, Liu S and Libchaber A 1997 DNA solution of the maximal clique problem Science 278 446–9
[27] Chao J et al 2019 Solving mazes with single-molecule DNA navigators Nat. Mater. 18 273–9
[28] Nakagaki T, Yamada H and Tóth Á 2000 Maze-solving by an amoeboid organism Nature 407 470
[29] Baumgardner J et al 2009 Solving a Hamiltonian path problem with a bacterial computer J. Biol. Eng. 3 1–11
[30] Park S, Wolanin P M, Yuzbashyan E A, Silberzan P, Stock J B and Austin R H 2003 Motion to form a quorum Science 301 188
[31] Perumal A S, Nayak M, Tokárová V, Kašpar O, Nicolau D V 2019 Space partitioning and maze solving by bacteria Proc. 11th EAI

Int. Conf. (BICT 2019), Bio-inspired Information and Communication Technologies ed A Compagnoni et al (Pittsburgh, PA, USA
13–14 March 2019) (Berlin: Springer) pp 175–80

[32] Liang Liu L, Yuning Song Y, Haiyang Zhang H, Huadong Ma H and Vasilakos A V 2015 Physarum optimization: a
biology-inspired algorithm for the Steiner tree problem in networks IEEE Trans. Comput. 64 818–31

[33] Nakagaki T, Kobayashi R, Nishiura Y and Ueda T 2004 Obtaining multiple separate food sources: behavioural intelligence in the
Physarum plasmodium Proc. R. Soc. B 271 2305–10

[34] Jones J and Adamatzky A 2014 Computation of the travelling salesman problem by a shrinking blob Nat. Comput. 13 1–16
[35] Hanson K L, Nicolau D V Jr, Filipponi L, Wang L, Lee A P and Nicolau D V 2006 Fungi use efficient algorithms for the

exploration of microfluidic networks Small 2 1212–20
[36] Held M, Binz M, Edwards C, Nicolau D V 2009 Dynamic behaviour of fungi in microfluidics: a comparative study Proc. SPIE

7182, The Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues vol 7 ed D L Farkas et al (San Jose, California,
United States 26–28 January 2009) (Bellingham, WA: SPIE Optical Engineering Press) 718213

[37] Qin J and Wheeler A R 2007 Maze exploration and learning in C. elegans Lab Chip 7 186–92
[38] Buatois A and Lihoreau M 2016 Evidence of trapline foraging in honeybees J. Exp. Biol. 219 2426–9
[39] Zhang S W, Bartsch K and Srinivasan M V 1996 Maze learning by honeybees Neurobiol. Learning Memory 66 267–82
[40] Dorigo M and Gambardella L M 1997 Ant colony system: a cooperative learning approach to the traveling salesman problem

IEEE Trans. Evol. Comput. 1 53–66
[41] Tolman E C and Honzik C H 1930 Introduction and removal of reward, and maze performance in rats University of California

Publications in Psychology 4 257–75
[42] Olton D S, Collison C and Werz M A 1977 Spatial memory and radial arm maze performance of rats Learn. Motiv. 8 289–314
[43] Bierley R A, Rixen G J, Tröster A I and Beatty W W 1986 Preserved spatial memory in old rats survives 10 months without

training Behav. Neural Biol. 45 223–9
[44] Pick C G and Yanai J 1983 Eight arm maze for mice Int. J. Neuroscience 21 63–6
[45] Roberts W A and Van Veldhuizen N 1985 Spatial memory in pigeons on the radial maze J. Exp. Psychol. 11 241–60
[46] Clelland C T, Risca V and Bancroft C 1999 Hiding messages in DNA microdots Nature 399 533–4
[47] Kosuri S and Church G M 2014 Large-scale de novo DNA synthesis: technologies and applications Nat. Methods 11 499–507
[48] Ho-Shing O, Lau K H, Vernon W, Eckdahl T T and Campbell A M 2012 Assembly of standardized DNA parts using BioBrick

ends in E. coli Gene Synthesis: Methods and Protocols: Methods in Molecular Biology vol 852 ed J Peccoud (Totowa, NJ: Humana
Press) pp 61–76

22

https://doi.org/10.1007/BF00339943
https://doi.org/10.1007/BF00339943
https://doi.org/10.1007/BF00339943
https://doi.org/10.1007/BF00339943
https://doi.org/10.1049/ip-cds:20040434
https://doi.org/10.1049/ip-cds:20040434
https://doi.org/10.1049/ip-cds:20040434
https://doi.org/10.1049/ip-cds:20040434
https://doi.org/10.1126/science.7973651
https://doi.org/10.1126/science.7973651
https://doi.org/10.1126/science.7973651
https://doi.org/10.1126/science.7973651
https://doi.org/10.1038/scientificamerican0898-54
https://doi.org/10.1038/scientificamerican0898-54
https://doi.org/10.1038/scientificamerican0898-54
https://doi.org/10.1038/scientificamerican0898-54
https://doi.org/10.1073/pnas.1510825113
https://doi.org/10.1073/pnas.1510825113
https://doi.org/10.1073/pnas.1510825113
https://doi.org/10.1073/pnas.1510825113
https://doi.org/10.1098/rsfs.2018.0034
https://doi.org/10.1098/rsfs.2018.0034
https://doi.org/10.1016/j.biosystems.2006.06.001
https://doi.org/10.1016/j.biosystems.2006.06.001
https://doi.org/10.1016/j.biosystems.2006.06.001
https://doi.org/10.1016/j.biosystems.2006.06.001
https://doi.org/10.1016/s0303-2647(00)00091-5
https://doi.org/10.1016/s0303-2647(00)00091-5
https://doi.org/10.1016/s0303-2647(00)00091-5
https://doi.org/10.1016/s0303-2647(00)00091-5
https://doi.org/10.1007/s11047-004-5199-x
https://doi.org/10.1007/s11047-004-5199-x
https://doi.org/10.1007/s11047-004-5199-x
https://doi.org/10.1007/s11047-004-5199-x
https://doi.org/10.1143/jjap.37.5839
https://doi.org/10.1143/jjap.37.5839
https://doi.org/10.1143/jjap.37.5839
https://doi.org/10.1143/jjap.37.5839
https://doi.org/10.1007/pl00009141
https://doi.org/10.1007/pl00009141
https://doi.org/10.1007/pl00009141
https://doi.org/10.1007/pl00009141
https://doi.org/10.1126/science.1069528
https://doi.org/10.1126/science.1069528
https://doi.org/10.1126/science.1069528
https://doi.org/10.1126/science.1069528
https://doi.org/10.1038/35003155
https://doi.org/10.1038/35003155
https://doi.org/10.1038/35003155
https://doi.org/10.1038/35003155
https://doi.org/10.1126/science.288.5469.1223
https://doi.org/10.1126/science.288.5469.1223
https://doi.org/10.1126/science.288.5469.1223
https://doi.org/10.1126/science.288.5469.1223
https://doi.org/10.1016/j.biosystems.2007.08.006
https://doi.org/10.1016/j.biosystems.2007.08.006
https://doi.org/10.1016/j.biosystems.2007.08.006
https://doi.org/10.1016/j.biosystems.2007.08.006
https://doi.org/10.1126/science.278.5337.446
https://doi.org/10.1126/science.278.5337.446
https://doi.org/10.1126/science.278.5337.446
https://doi.org/10.1126/science.278.5337.446
https://doi.org/10.1038/s41563-018-0205-3
https://doi.org/10.1038/s41563-018-0205-3
https://doi.org/10.1038/s41563-018-0205-3
https://doi.org/10.1038/s41563-018-0205-3
https://doi.org/10.1038/35035159
https://doi.org/10.1038/35035159
https://doi.org/10.1186/1754-1611-3-11
https://doi.org/10.1186/1754-1611-3-11
https://doi.org/10.1186/1754-1611-3-11
https://doi.org/10.1186/1754-1611-3-11
https://doi.org/10.1126/science.1079805
https://doi.org/10.1126/science.1079805
https://doi.org/10.1109/tc.2013.229
https://doi.org/10.1109/tc.2013.229
https://doi.org/10.1109/tc.2013.229
https://doi.org/10.1109/tc.2013.229
https://doi.org/10.1098/rspb.2004.2856
https://doi.org/10.1098/rspb.2004.2856
https://doi.org/10.1098/rspb.2004.2856
https://doi.org/10.1098/rspb.2004.2856
https://doi.org/10.1007/s11047-013-9401-x
https://doi.org/10.1007/s11047-013-9401-x
https://doi.org/10.1007/s11047-013-9401-x
https://doi.org/10.1007/s11047-013-9401-x
https://doi.org/10.1002/smll.200600105
https://doi.org/10.1002/smll.200600105
https://doi.org/10.1002/smll.200600105
https://doi.org/10.1002/smll.200600105
https://doi.org/10.1039/b613414a
https://doi.org/10.1039/b613414a
https://doi.org/10.1039/b613414a
https://doi.org/10.1039/b613414a
https://doi.org/10.1242/jeb.143214
https://doi.org/10.1242/jeb.143214
https://doi.org/10.1242/jeb.143214
https://doi.org/10.1242/jeb.143214
https://doi.org/10.1006/nlme.1996.0069
https://doi.org/10.1006/nlme.1996.0069
https://doi.org/10.1006/nlme.1996.0069
https://doi.org/10.1006/nlme.1996.0069
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/4235.585892
https://doi.org/10.1016/0023-9690(77)90054-6
https://doi.org/10.1016/0023-9690(77)90054-6
https://doi.org/10.1016/0023-9690(77)90054-6
https://doi.org/10.1016/0023-9690(77)90054-6
https://doi.org/10.1016/s0163-1047(86)90794-6
https://doi.org/10.1016/s0163-1047(86)90794-6
https://doi.org/10.1016/s0163-1047(86)90794-6
https://doi.org/10.1016/s0163-1047(86)90794-6
https://doi.org/10.3109/00207458308986121
https://doi.org/10.3109/00207458308986121
https://doi.org/10.3109/00207458308986121
https://doi.org/10.3109/00207458308986121
https://doi.org/10.1037/0097-7403.11.2.241
https://doi.org/10.1037/0097-7403.11.2.241
https://doi.org/10.1037/0097-7403.11.2.241
https://doi.org/10.1037/0097-7403.11.2.241
https://doi.org/10.1038/21092
https://doi.org/10.1038/21092
https://doi.org/10.1038/21092
https://doi.org/10.1038/21092
https://doi.org/10.1038/nmeth.2918
https://doi.org/10.1038/nmeth.2918
https://doi.org/10.1038/nmeth.2918
https://doi.org/10.1038/nmeth.2918

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

[49] Integrated DNA Technologies Inc 2021 IDT: gene synthesis-online resources and pricing https://idtdna.com/pages/products/
genes-and-gene-fragments/custom-gene-synthesis

[50] Codex DNA Inc 2021 Codex: gene synthesis-online resources and pricing https://codexdna.com/products/bioxp-kits/
gene-synthesis/

[51] Twist Bioscience 2021 Twist biosciences: gene synthesis-online resources and pricing https://twistbioscience.com/products/genes
[52] Eurofins USA 2021 Eurofins: gene synthesis-online resources and pricing https://eurofinsus.com/genomic-services/

gene-synthesis/
[53] GenScript 2021 Genscript: gene synthesis-online resources and pricing https://genscript.com/gene_synthesis.html
[54] Bio Basic Inc 2017 Biobasics: gene synthesis-online resources and pricing https://biobasic.com/genes-pricing/
[55] Chatterjee G, Dalchau N, Muscat R A, Phillips A and Seelig G 2017 A spatially localized architecture for fast and modular DNA

computing Nat. Nanotechnol. 12 920–7
[56] Mao C, LaBean T H, Reif J H and Seeman N C 2000 Logical computation using algorithmic self-assembly of DNA

triple-crossover molecules Nature 407 493–6
[57] Adar R, Benenson Y, Linshiz G, Rosner A, Tishby N and Shapiro E 2004 Stochastic computing with biomolecular automata Proc.

Natl Acad. Sci. 101 9960–5
[58] Rothemund P W K, Papadakis N and Winfree E 2004 Algorithmic self-assembly of DNA Sierpinski triangles PLOS Biol. 2

2041–53
[59] Woods D, Doty D, Myhrvold C, Hui J, Zhou F, Yin P and Winfree E 2019 Diverse and robust molecular algorithms using

reprogrammable DNA self-assembly Nature 567 366–72
[60] Benenson Y, Adar R, Paz-Elizur T, Livneh Z and Shapiro E 2003 DNA molecule provides a computing machine with both data

and fuel Proc. Natl Acad. Sci. 100 2191–6
[61] Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z and Shapiro E 2001 Programmable and autonomous computing machine

made of biomolecules Nature 414 430–4
[62] Cherry K M and Qian L 2018 Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks Nature

559 370–6
[63] Qian L and Winfree E 2011 Scaling up digital circuit computation with DNA strand displacement cascades Science 332

1196–201
[64] Song T, Eshra A, Shah S, Bui H, Fu D, Yang M, Mokhtar R and Reif J 2019 Fast and compact DNA logic circuits based on

single-stranded gates using strand-displacing polymerase Nat. Nanotechnol. 14 1075–81
[65] Qian L, Winfree E and Bruck J 2011 Neural network computation with DNA strand displacement cascades Nature 475 368–72
[66] Su H, Xu J, Wang Q, Wang F and Zhou X 2019 High-efficiency and integrable DNA arithmetic and logic system based on strand

displacement synthesis Nat. Commun. 10 5390
[67] Shah S et al 2020 Using strand displacing polymerase to program chemical reaction networks J. Am. Chem. Soc. 142 9587–93
[68] Venter J C et al 2001 The sequence of the human genome Science 291 1304–51
[69] Reuter J A, Spacek D V and Snyder M P 2015 High-throughput sequencing technologies Mol. Cell 58 586–97
[70] Chandak S et al 2020 Overcoming high nanopore basecaller error rates for DNA storage via basecaller-decoder integration and

convolutional codes Proc. 2020 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP 2020) (Barcelona, Spain 4–8 May
2020) (Piscataway, NJ: IEEE) pp 8822–6

[71] Johnson C R 2006 Automating the DNA computer: solving n-variable 3-SAT problems Proc. 12th Int. Meeting on DNA
Computing (DNA 2006), DNA Computing vol 4287 ed C Mao and T Yokomori (Seoul, Korea 5–9 June 2006) (Berlin: Springer)
pp 360–73

[72] Ogasawara S and Fujimoto K 2005 Solution of a SAT problem on a photochemical DNA computer Chem. Lett. 34 378–9
[73] Chang W-L, Ho M and Guo M 2004 Molecular solutions for the subset-sum problem on DNA-based supercomputing

Biosystems 73 117–30
[74] Pérez-Jiménez M J and Sancho-Caparrini F 2002 Solving knapsack problems in a sticker-based model Proc. 7th Int. Workshop on

DNA-Based Computers (DNA 2001), DNA Computing vol 2340 ed N Jonoska and N C Seeman N C (Tampa, FL, USA 10–13 June
2001) (Berlin: Springer) pp 161–71

[75] Xu X-Y et al 2020 A scalable photonic computer solving the subset sum problem Sci. Adv. 6 eaay5853
[76] Oltean M and Muntean O 2009 Solving the subset-sum problem with a light-based device Nat. Comput. 8 321–31
[77] Jiang S and Granick S 2012 Janus Particle Synthesis, Self-Assembly and Applications (Cambridge: Royal Society of Chemistry)
[78] Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R and Golestanian R 2007 Self-motile colloidal particles: from directed

propulsion to random walk Phys. Rev. Lett. 99 048102
[79] Nicolau D V, Nicolau D V Jr, Solana G, Hanson K L, Filipponi L, Wang L and Lee A P 2006 Molecular motors-based micro- and

nano-biocomputation devices Microelectron. Eng. 83 1582–8
[80] Nayak M, Perumal A S, Nicolau D V and van Delft FCMJM 2018 Bacterial motility behaviour in sub-ten micron wide

geometries Proc. 16th IEEE Int. New Circuits and Systems Conf. (NEWCAS 2018) (Montŕeal, QC, Canada 24–27 June 2018)
(Piscataway, NJ: IEEE) pp 382–4

[81] van Delft F C M J M, Sudalaiyadum Perumal A, van Langen-Suurling A, de Boer C, Kašpar O, Tokárová V, Dirne F W A and
Nicolau D V 2021 Design and fabrication of networks for bacterial computing New J. Phys. 23 085009

[82] Chiu D T, Pezzoli E, Wu H, Stroock A D and Whitesides G M 2001 Using three-dimensional microfluidic networks for solving
computationally hard problems Proc. Natl Acad. Sci. 98 2961–6

[83] Nicolau D V Jr, Burrage K and Nicolau D V 2006 Computing with motile bio-agents Proc. Int. Society for Optics and Photonics.
Biomedical Applications of Micro-and Nanoengineering III; SPIE Proc. vol 6416 ed D V Nicolau pp 220–8

[84] Held M, Edwards C and Nicolau D V 2011 Probing the growth dynamics of neurospora crassa with microfluidic structures
Fungal. Biol. 115 493–505

[85] Tinevez J-Y, Perry N, Schindelin J, Hoopes G M, Reynolds G D, Laplantine E, Bednarek S Y, Shorte S L and Eliceiri K W 2017
TrackMate: an open and extensible platform for single-particle tracking Methods 115 80–90

[86] Abràmoff M D, Magalhães P J and Ram S J 2004 Image processing with ImageJ Biophoton. Int. 11 36–42 http://dspace.
library.uu.nl/handle/1874/204900

[87] Meijering E, Dzyubachyk O and Smal I 2012 Methods for cell and particle tracking Imaging and Spectroscopic Analysis of Living
Cells: Optical and Spectroscopic Techniques (Methods in Enzymology) vol 504 ed P M Conn (New Year: Academic) pp 183–200 ch
9

23

https://idtdna.com/pages/products/genes-and-gene-fragments/custom-gene-synthesis
https://idtdna.com/pages/products/genes-and-gene-fragments/custom-gene-synthesis
https://codexdna.com/products/bioxp-kits/gene-synthesis/
https://codexdna.com/products/bioxp-kits/gene-synthesis/
https://twistbioscience.com/products/genes
https://eurofinsus.com/genomic-services/gene-synthesis/
https://eurofinsus.com/genomic-services/gene-synthesis/
https://genscript.com/gene_synthesis.html
https://biobasic.com/genes-pricing/
https://doi.org/10.1038/nnano.2017.127
https://doi.org/10.1038/nnano.2017.127
https://doi.org/10.1038/nnano.2017.127
https://doi.org/10.1038/nnano.2017.127
https://doi.org/10.1038/35035038
https://doi.org/10.1038/35035038
https://doi.org/10.1038/35035038
https://doi.org/10.1038/35035038
https://doi.org/10.1073/pnas.0400731101
https://doi.org/10.1073/pnas.0400731101
https://doi.org/10.1073/pnas.0400731101
https://doi.org/10.1073/pnas.0400731101
https://doi.org/10.1371/journal.pbio.0020424
https://doi.org/10.1371/journal.pbio.0020424
https://doi.org/10.1371/journal.pbio.0020424
https://doi.org/10.1371/journal.pbio.0020424
https://doi.org/10.1038/s41586-019-1014-9
https://doi.org/10.1038/s41586-019-1014-9
https://doi.org/10.1038/s41586-019-1014-9
https://doi.org/10.1038/s41586-019-1014-9
https://doi.org/10.1073/pnas.0535624100
https://doi.org/10.1073/pnas.0535624100
https://doi.org/10.1073/pnas.0535624100
https://doi.org/10.1073/pnas.0535624100
https://doi.org/10.1038/35106533
https://doi.org/10.1038/35106533
https://doi.org/10.1038/35106533
https://doi.org/10.1038/35106533
https://doi.org/10.1038/s41586-018-0289-6
https://doi.org/10.1038/s41586-018-0289-6
https://doi.org/10.1038/s41586-018-0289-6
https://doi.org/10.1038/s41586-018-0289-6
https://doi.org/10.1126/science.1200520
https://doi.org/10.1126/science.1200520
https://doi.org/10.1126/science.1200520
https://doi.org/10.1126/science.1200520
https://doi.org/10.1038/s41565-019-0544-5
https://doi.org/10.1038/s41565-019-0544-5
https://doi.org/10.1038/s41565-019-0544-5
https://doi.org/10.1038/s41565-019-0544-5
https://doi.org/10.1038/nature10262
https://doi.org/10.1038/nature10262
https://doi.org/10.1038/nature10262
https://doi.org/10.1038/nature10262
https://doi.org/10.1038/s41467-019-13310-2
https://doi.org/10.1038/s41467-019-13310-2
https://doi.org/10.1021/jacs.0c02240
https://doi.org/10.1021/jacs.0c02240
https://doi.org/10.1021/jacs.0c02240
https://doi.org/10.1021/jacs.0c02240
https://doi.org/10.1126/science.1058040
https://doi.org/10.1126/science.1058040
https://doi.org/10.1126/science.1058040
https://doi.org/10.1126/science.1058040
https://doi.org/10.1016/j.molcel.2015.05.004
https://doi.org/10.1016/j.molcel.2015.05.004
https://doi.org/10.1016/j.molcel.2015.05.004
https://doi.org/10.1016/j.molcel.2015.05.004
https://doi.org/10.1246/cl.2005.378
https://doi.org/10.1246/cl.2005.378
https://doi.org/10.1246/cl.2005.378
https://doi.org/10.1246/cl.2005.378
https://doi.org/10.1016/j.biosystems.2003.11.001
https://doi.org/10.1016/j.biosystems.2003.11.001
https://doi.org/10.1016/j.biosystems.2003.11.001
https://doi.org/10.1016/j.biosystems.2003.11.001
https://doi.org/10.1126/sciadv.aay5853
https://doi.org/10.1126/sciadv.aay5853
https://doi.org/10.1007/s11047-007-9059-3
https://doi.org/10.1007/s11047-007-9059-3
https://doi.org/10.1007/s11047-007-9059-3
https://doi.org/10.1007/s11047-007-9059-3
https://doi.org/10.1103/physrevlett.99.048102
https://doi.org/10.1103/physrevlett.99.048102
https://doi.org/10.1016/j.mee.2006.01.198
https://doi.org/10.1016/j.mee.2006.01.198
https://doi.org/10.1016/j.mee.2006.01.198
https://doi.org/10.1016/j.mee.2006.01.198
https://doi.org/10.1088/1367-2630/ac1d38
https://doi.org/10.1088/1367-2630/ac1d38
https://doi.org/10.1073/pnas.061014198
https://doi.org/10.1073/pnas.061014198
https://doi.org/10.1073/pnas.061014198
https://doi.org/10.1073/pnas.061014198
https://doi.org/10.1016/j.funbio.2011.02.003
https://doi.org/10.1016/j.funbio.2011.02.003
https://doi.org/10.1016/j.funbio.2011.02.003
https://doi.org/10.1016/j.funbio.2011.02.003
https://doi.org/10.1016/j.ymeth.2016.09.016
https://doi.org/10.1016/j.ymeth.2016.09.016
https://doi.org/10.1016/j.ymeth.2016.09.016
https://doi.org/10.1016/j.ymeth.2016.09.016
http://dspace.library.uu.nl/handle/1874/204900
http://dspace.library.uu.nl/handle/1874/204900

New J. Phys. 23 (2021) 125001 A Sudalaiyadum Perumal et al

[88] Chiappetta M 2020 AMD Ryzen 9 3950X review: a 16-Core Zen 2 Powerhouse. HotHardware web.archive.org/web/
20200318200417/https://hothardware.com/reviews/amd-ryzen-threadripper-3990x-cpu-review?page=3

[89] Moore G E 2006 Moore’s law at 40 Understanding Moore’s Law: Four Decades of Innovation ed D C Brock (Philadelphia,
Pennsylvania: Chemical Heritage Press) pp 67–84

[90] Iwai H 2016 End of the scaling theory and Moore’s law Proc. 16th Int. Workshop on Junction Technology (IWJT 2016) ed Y-L Jiang
et al (Shanghai China 9–10 May 2016) (Piscataway, NJ: IEEE) pp 1–4

[91] Eeckhout L 2017 Is Moore’s law slowing down? What’s next? IEEE Micro 37 4–5
[92] Lundberg K S, Shoemaker D D, Adams M W W, Short J M, Sorge J A and Mathur E J 1991 High-fidelity amplification using a

thermostable DNA polymerase isolated from Pyrococcus furiosus Gene 108 1–6
[93] Barnes W M 1994 PCR amplification of up to 35 kb DNA with high fidelity and high yield from lambda bacteriophage templates

Proc. Natl Acad. Sci. 91 2216–20
[94] Aoi Y, Yoshinobu T, Tanizawa K, Kinoshita K and Iwasaki H 1999 Ligation errors in DNA computing Biosystems 52 181–7
[95] Garzon M, Neathery P, Deaton R, Murphy R C, Franceschetti D R and Stevens S Jr 1997 A new metric for DNA computing Proc.

2nd Genetic Programming Conf. (Morgan Kaufman) pp 472–8
[96] Zhang F, Nangreave J, Liu Y and Yan H 2014 Structural DNA nanotechnology: state of the art and future perspective J. Am.

Chem. Soc. 136 11198–211
[97] Liu Z, Deibler R W, Chan H S and Zechiedrich L 2009 The why and how of DNA unlinking Nucl. Acids Res. 37 661–71
[98] Ezziane Z 2005 DNA computing: applications and challenges Nanotechnology 17 27R–39
[99] Bates A D and Maxwell A 2005 DNA Topology (Oxford: Oxford University Press)

[100] Roberts R J, Vincze T, Posfai J and Macelis D 2014 REBASE-A database for DNA restriction and modification: enzymes, genes
and genomes Nucl. Acids Res. 43 298D–9

[101] Held M, Kašpar O, Edwards C and Nicolau D V 2019 Intracellular mechanisms of fungal space searching in microenvironments
Proc. Natl Acad. Sci. USA 116 13543–52

[102] Johansson B G 1972 Agarose gel electrophoresis Scand. J. Clin. Laboratory Invest. 29 7–19
[103] Green M R and Sambrook J 2012 Molecular Cloning: A Laboratory Manual 4th edn (New York: Cold Spring Harbor Laboratory

Press)
[104] Pilo S, Zizelski Valenci G, Rubinstein M, Pichadze L, Scharf Y, Dveyrin Z, Rorman E and Nissan I 2021 High-resolution

multilocus sequence typing for chlamydia trachomatis: improved results for clinical samples with low amounts of C. trachomatis
DNA BMC Microbiol. 21 28

[105] Shioda S 2020 Coupon subset collection problem with quotas Methodol. Comput. Appl. Probab. 1–33
[106] Kobza J E, Jacobson S H and Vaughan D E 2007 A survey of the coupon collectors problem with random sample sizes Methodol.

Comput. Appl. Probab. 9 573–84
[107] Myers J A, Curtis B S and Curtis W R 2013 Improving accuracy of cell and chromophore concentration measurements using

optical density BMC Biophys. 6 4
[108] Vincze T, Posfai J and Roberts R J 2003 NEBcutter: a program to cleave DNA with restriction enzymes Nucl. Acids Res. 31

3688–91
[109] Dickson K S, Burns C M and Richardson J P 2000 Determination of the free-energy change for repair of a DNA phosphodiester

bond J. Biol. Chem. 275 15828–31
[110] Hunter P 2010 Can bacteria save the planet? New developments in systems biology and biotechnology to harness bacteria for

renewable energy and environmental regeneration EMBO Rep. 11 266–9
[111] Wong P C, Wong K-K and Foote H 2003 Organic data memory using the DNA approach Commun. ACM 46 95–8
[112] Shipman S L, Nivala J, Macklis J D and Church G M 2017 CRISPR-Cas encoding of a digital movie into the genomes of a

population of living bacteria Nature 547 345–9
[113] Newman S, Stephenson A P, Willsey M, Nguyen B H, Takahashi C N, Strauss K and Ceze L 2019 High density DNA data storage

library via dehydration with digital microfluidic retrieval Nat. Commun. 10 1706
[114] Ceze L, Nivala J and Strauss K 2019 Molecular digital data storage using DNA Nat. Rev. Genet. 20 456–66
[115] Kohman R E, Kunjapur A M, Hysolli E, Wang Y and Church G M 2018 From designing the molecules of life to designing life:

future applications derived from advances in DNA technologies Angew. Chem., Int. Ed. 57 4313–28
[116] Ke Y, Ong L L, Shih W M and Yin P 2012 Three-dimensional structures self-assembled from DNA bricks Science 338 1177–83
[117] Ong L L et al 2017 Programmable self-assembly of three-dimensional nanostructures from 10000 unique components Nature

552 72–7
[118] Wagenbauer K F, Sigl C and Dietz H 2017 Gigadalton-scale shape-programmable DNA assemblies Nature 552 78–83
[119] Benson E, Mohammed A, Gardell J, Masich S, Czeizler E, Orponen P and Högberg B 2015 DNA rendering of polyhedral meshes

at the nanoscale Nature 523 441–4
[120] Tikhomirov G, Petersen P and Qian L 2017 Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns

Nature 552 67–71
[121] Liu X et al 2018 Complex silica composite nanomaterials templated with DNA origami Nature 559 593–8
[122] Gu H, Chao J, Xiao S-J and Seeman N C 2010 A proximity-based programmable DNA nanoscale assembly line Nature 465

202–5
[123] Thubagere A J et al 2017 A cargo-sorting DNA robot Science 357 eaan6558
[124] Na D 2020 DNA steganography: hiding undetectable secret messages within the single nucleotide polymorphisms of a genome

and detecting mutation-induced errors Microbial. Cell Fact 19 128

24

web.archive.org/web/20200318200417/https://hothardware.com/reviews/amd-ryzen-threadripper-3990x-cpu-review?page=3
web.archive.org/web/20200318200417/https://hothardware.com/reviews/amd-ryzen-threadripper-3990x-cpu-review?page=3
https://doi.org/10.1109/mm.2017.3211123
https://doi.org/10.1109/mm.2017.3211123
https://doi.org/10.1109/mm.2017.3211123
https://doi.org/10.1109/mm.2017.3211123
https://doi.org/10.1016/0378-1119(91)90480-y
https://doi.org/10.1016/0378-1119(91)90480-y
https://doi.org/10.1016/0378-1119(91)90480-y
https://doi.org/10.1016/0378-1119(91)90480-y
https://doi.org/10.1073/pnas.91.6.2216
https://doi.org/10.1073/pnas.91.6.2216
https://doi.org/10.1073/pnas.91.6.2216
https://doi.org/10.1073/pnas.91.6.2216
https://doi.org/10.1016/s0303-2647(99)00045-3
https://doi.org/10.1016/s0303-2647(99)00045-3
https://doi.org/10.1016/s0303-2647(99)00045-3
https://doi.org/10.1016/s0303-2647(99)00045-3
https://doi.org/10.1021/ja505101a
https://doi.org/10.1021/ja505101a
https://doi.org/10.1021/ja505101a
https://doi.org/10.1021/ja505101a
https://doi.org/10.1093/nar/gkp041
https://doi.org/10.1093/nar/gkp041
https://doi.org/10.1093/nar/gkp041
https://doi.org/10.1093/nar/gkp041
https://doi.org/10.1088/0957-4484/17/2/r01
https://doi.org/10.1088/0957-4484/17/2/r01
https://doi.org/10.1088/0957-4484/17/2/r01
https://doi.org/10.1088/0957-4484/17/2/r01
https://doi.org/10.1093/nar/gku1046
https://doi.org/10.1093/nar/gku1046
https://doi.org/10.1093/nar/gku1046
https://doi.org/10.1093/nar/gku1046
https://doi.org/10.1073/pnas.1816423116
https://doi.org/10.1073/pnas.1816423116
https://doi.org/10.1073/pnas.1816423116
https://doi.org/10.1073/pnas.1816423116
https://doi.org/10.3109/00365517209102747
https://doi.org/10.3109/00365517209102747
https://doi.org/10.3109/00365517209102747
https://doi.org/10.3109/00365517209102747
https://doi.org/10.1186/s12866-020-02077-y
https://doi.org/10.1186/s12866-020-02077-y
https://doi.org/10.1007/s11009-020-09811-z
https://doi.org/10.1007/s11009-020-09811-z
https://doi.org/10.1007/s11009-020-09811-z
https://doi.org/10.1007/s11009-006-9013-3
https://doi.org/10.1007/s11009-006-9013-3
https://doi.org/10.1007/s11009-006-9013-3
https://doi.org/10.1007/s11009-006-9013-3
https://doi.org/10.1186/2046-1682-6-4
https://doi.org/10.1186/2046-1682-6-4
https://doi.org/10.1093/nar/gkg526
https://doi.org/10.1093/nar/gkg526
https://doi.org/10.1093/nar/gkg526
https://doi.org/10.1093/nar/gkg526
https://doi.org/10.1074/jbc.m910044199
https://doi.org/10.1074/jbc.m910044199
https://doi.org/10.1074/jbc.m910044199
https://doi.org/10.1074/jbc.m910044199
https://doi.org/10.1038/embor.2010.39
https://doi.org/10.1038/embor.2010.39
https://doi.org/10.1038/embor.2010.39
https://doi.org/10.1038/embor.2010.39
https://doi.org/10.1145/602421.602426
https://doi.org/10.1145/602421.602426
https://doi.org/10.1145/602421.602426
https://doi.org/10.1145/602421.602426
https://doi.org/10.1038/nature23017
https://doi.org/10.1038/nature23017
https://doi.org/10.1038/nature23017
https://doi.org/10.1038/nature23017
https://doi.org/10.1038/s41467-019-09517-y
https://doi.org/10.1038/s41467-019-09517-y
https://doi.org/10.1038/s41576-019-0125-3
https://doi.org/10.1038/s41576-019-0125-3
https://doi.org/10.1038/s41576-019-0125-3
https://doi.org/10.1038/s41576-019-0125-3
https://doi.org/10.1002/anie.201707976
https://doi.org/10.1002/anie.201707976
https://doi.org/10.1002/anie.201707976
https://doi.org/10.1002/anie.201707976
https://doi.org/10.1126/science.1227268
https://doi.org/10.1126/science.1227268
https://doi.org/10.1126/science.1227268
https://doi.org/10.1126/science.1227268
https://doi.org/10.1038/nature24648
https://doi.org/10.1038/nature24648
https://doi.org/10.1038/nature24648
https://doi.org/10.1038/nature24648
https://doi.org/10.1038/nature24651
https://doi.org/10.1038/nature24651
https://doi.org/10.1038/nature24651
https://doi.org/10.1038/nature24651
https://doi.org/10.1038/nature14586
https://doi.org/10.1038/nature14586
https://doi.org/10.1038/nature14586
https://doi.org/10.1038/nature14586
https://doi.org/10.1038/nature24655
https://doi.org/10.1038/nature24655
https://doi.org/10.1038/nature24655
https://doi.org/10.1038/nature24655
https://doi.org/10.1038/s41586-018-0332-7
https://doi.org/10.1038/s41586-018-0332-7
https://doi.org/10.1038/s41586-018-0332-7
https://doi.org/10.1038/s41586-018-0332-7
https://doi.org/10.1038/nature09026
https://doi.org/10.1038/nature09026
https://doi.org/10.1038/nature09026
https://doi.org/10.1038/nature09026
https://doi.org/10.1126/science.aan6558
https://doi.org/10.1126/science.aan6558
https://doi.org/10.1186/s12934-020-01387-0
https://doi.org/10.1186/s12934-020-01387-0

	As good as it gets: a scaling comparison of DNA computing, network biocomputing, and electronic computing approaches to an NP-complete problem
	1. Introduction
	2. Solving the Subset Sum Problem with various computational approaches
	2.1. NP-complete problems and the Subset Sum Problem
	2.2. DNA computing (DNA-C)
	2.2.1. DNA computing overview
	2.2.2. DNA computing procedure for solving SSP

	2.3. Network biocomputing (NB-C) for solving SSP
	2.3.1. Technology of NB-C with motile agents
	2.3.2. NB-C method for solving SSP

	2.4. Electronic computing (E-C)

	3. Scaling comparison of the DNA-C, NB-C, and E-C methods solving SSP
	3.1. Pre-computing
	3.2. Comparison of the volume required by computation
	3.3. Comparison of the computing time
	3.4. Comparison of energy required for computation

	4. Perspectives
	Acknowledgments
	Data availability statement
	Author contributions
	ORCID iDs
	References

